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2-stage Stochastic Programs with Integer Recourse

Consider the following stochastic problem

min
x∈X

cx + Eξ min
{
qy|T (ξ)x + Wy ≥ h(ξ), y ∈ Zn2

+

}
(1)

where ξ is a random variable having support Ξ ⊂ Rk and

X = {x ∈ Rn1
+ |Ax ≥ b}.

Comment 1. The part of the objective function and the constraints only
related to the first stage decision variable x form a LP. This is only for
simplicity.
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Deterministic Equivalent

We make the following assumption

• The random variable ξ has a discrete distribution with finite support, say
Ξ =

{
ξ1, . . . , ξr

}
and P

(
ξ = ξj

)
= pj.

Under this assumption, (1) is equivalent to

min cx +
r∑

j=1

pjqyj

s.t. Ax ≥ b (2)

T (ξ)x + Wy ≥ h(ξ), j = 1, . . . , r

x ∈ Rn1
+ , y ∈ Zn2

+

where the constraints have a dual blockangular structure or L-shaped form.

Comment 2. (2) has n1 + rn2 variables.
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Reformulation

Rewriting the problem in terms of only first stage variables yields:

min{cx +Q(x)|x ∈ X} (3)

where

Q(x) := EξΦ(h(ξ)− T (ξ)x) =
r∑

j=1

pjΦ(h(ξ)− T (ξ)x)

and Φ is the value function of the second stage problem

Φ(d) = min{qy|Wy ≥ d, y ∈ Zn2
+ }, d ∈ Rm2. (4)

Comment 3. Q(x) is nonconvex and discontinuous.
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Definition Review

• A function F is said to be nondecreasing if

F (a) ≤ F (b) ∀a, b ∈ Rm, a ≤ b

• A function F is said to be superadditive if

F (a) + F (b) ≤ F (a + b), ∀a, b ∈ Rm

• The round-up dF e is defined by dF e(d) = dF (d)e, where dF (d)e is
smallest integer larger than F (d).
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Generalized Dual

• Recall the second stage problem

Φ(d) = min{qy|Wy ≥ d, y ∈ Zn2
+ }, d ∈ Rm2.

• Let F be the set of all functions F : Rm2 → R that satisfy F (0) = 0
and are nondecreasing.

• Then, we can define the dual of the problem as

max
F

F (d)

s.t. F (Wy) ≤ qy, ∀y ∈ Zn2
+ (5)

F ∈ F (6)

where F is a subset of F .
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IP Duality and Farkas’ Lemma

Theorem 1. [Weak Duality] qy ≤ F (d) for all feasible solutions y of (4)
and all dual feasible functions F of (5).

Theorem 2. If the function class F is suitably large then (4) is infeasible
if and only if ∃Ĝ ∈ F with Ĝ(Wy) ≤ 0 for all y ∈ Zn2

+ and Ĝ(d) > 0. The

function Ĝ is then called a dual ray. If (4) is feasible, then ŷ is optimal in
(4) if and only if ∃F̂ ∈ F feasible in (5) such that qŷ = F̂ (d).

• This result is analogous to the Strong Duality Theorem and Farkas’
Lemma for linear programming.
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Generalized L-shaped Decomposition

• We rewrite (3) as

min{cx + θ|θ ≥ Q(x), x ∈ X} (7)

and represent the constraint θ ≥ Q(x) by means of dual price functions.

• For each outcome ξj ∈ Ξ, we have a second stage problem

min{qy|Wy ≥ h(ξj)− T (ξj)x, y ∈ Zn2
+ } (8)

and associated dual

max
F
{F (h(ξj)− T (ξj)x)|F (Wy) ≤ qy, ∀y ∈ Zn2

+ , F ∈ F}. (9)
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Feasiblity and Optimality Cuts

• We generate feasibility cuts of the form

Ĝ(h(ξj)− T (ξj)x) ≤ 0

where Ĝ is the optimal dual solution of the Phase I problem:

min{et|Wy + It ≥ h(ξj)− T (ξ)x∗}

• By solving (9) with x = x∗ for each ξj ∈ Ξ, we generate optimality cuts
of the form

θ ≥
r∑

j=1

pjF̂ j(h(ξj)− T (ξj)x)

where F̂ j, j = 1, . . . , r are optimal solutions of (9).
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Relaxed Master Problem

At each iteration, we solve the current problem:

min cx + θ

s.t 0 ≥ Ĝkj
(h(ξj)− T (ξj)x), kj = 1, . . . , s(j), j = 1, . . . , r

θ ≥
r∑

j=1

pjF̂ j(h(ξj)− T (ξj)x) k = 1, . . . , t (10)

x ∈ X

We denote solutions to 10 by (xn, θn). The algorithm terminates when
cxn + θn = zn, or (10) is infeasible.

Comment 4. (10) has n1 + 1 variables, but a lot of constraints.
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Cutting Plane Algorithm

Let F be the set of nondecreasing superadditive functions such that F (0) =
0. Then, (9) is equivalent to

max F (h(ξj)− T (ξj)x)

s.t. F (wj) ≤ qj, j = 1, . . . , n2 (11)

F ∈ F

In a cutting plane procedure

• Valid inequalities are successively generated and added to the constraint
set

• LP relaxation are solved

• Process is repeated until current LP-solution is integral

• Cuts are of the form

n2∑

j=1

F (l)(wj)yj ≥ F (l)(q), l = 1, . . . , τ
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Cutting Plane Algorithm (2)

At termination, we have the function

F (d) :=
m2∑

i=1

uidi +
τ∑

i=1

um2+iF
(i)(d)

that is a feasible and optimal solution of (11), where dual variables

(u1, . . . , um2, um2+1, . . . , um2+r)

are obtained from the LP-solution.
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Branch and Bound

Alternatively, we can solve the second stage problems using a branch-
and-bound algorithm. In this case, we generate price functions of the
form

F (d) := min
i=1,...,P

{uid + bi}, ui = (ui
1, . . . , u

i
m2

) ≥ 0

for some finite P ∈ N.

We generate these functions by solving the dual of

min{qy | Wy ≥ d, ki ≤ y ≤ li},

for terminal node i and RHS d, given by

max{ud + uki − uli | uW + u− u ≤ q, u, u, u ≥ 0}

and letting fi(d) = uid + uiki − uili = uid + bi.
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Stay Tuned...

• Apply a similar idea to the MIP Interdiction Problem (MIPINT):

min
x∈X

cx + dy + max
y

hy

subject to Ey ≤ g (12)

y ≤ u(1− x)

y ∈ YINT

where X = {x : Ax ≥ b, x ∈ Bn} and YINT ⊆ Rn
+ defines some

integrality conditions on the lower-level variables.

• Using inner approximation, rather than outer approximation for lower-
level problem

– Maybe a Dantzig-Wolfe-like scheme
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