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2-stage Stochastic Programs with Integer Recourse

Consider the following stochastic problem

Héi)r% cx + Ee min {qy|T()z + Wy > h(§),y € Z1*} (1)

where £ is a random variable having support Z C R” and
X ={z e R'|Az > b}.

Comment 1. The part of the objective function and the constraints only

related to the first stage decision variable x form a LP. This is only for
simplicity.



Deterministic Equivalent

We make the following assumption

e The random variable & has a discrete distribution with finite support, say

=={¢',...,¢"} and P (¢ =¢9) = p.

Under this assumption, (1) is equivalent to

min cr + ijqyj
j=1
s.t. Ax > b (2)
TEx+Wy>h(&), j=1,...,r
v e R yeZ?
where the constraints have a dual blockangular structure or L-shaped form.

Comment 2. (2) has ni + rng variables.



Reformulation

Rewriting the problem in terms of only first stage variables yields:

min{cx + Q(z)|x € X}

where
Q(z) :=EeP(h(£) ZP“I) T(¢)z)

and ® is the value function of the second stage problem
®(d) = min{qy|Wy > d,y € Z'*},d € R™2.

Comment 3. Q(x) is nonconvex and discontinuous.



Definition Review

e A function F'is said to be nondecreasing if

F(a) < F(b) Va,beR™ a<b

e A function F'is said to be superadditive if

F(a)+ F(b) < F(a+10b), VYa,beR™

e The round-up |F is defined by [F'|(d) = [F(d)], where [F(d)] is
smallest integer larger than F'(d).



Generalized Dual

e Recall the second stage problem

®(d) = min{qy|Wy > d,y € Z?},d € R™2.

o Let F be the set of all functions F' : R™2 — R that satisfy F'(0) = 0
and are nondecreasing.

e Then, we can define the dual of the problem as

max F(d)
st. F(Wy) <qy, Vy€eZy (5)
FeF (6)

where F is a subset of F.



IP Duality and Farkas’ Lemma

Theorem 1. [Weak Duality] qy < F'(d) for all feasible solutions y of (4)
and all dual feasible functions F' of (5).

Theorem 2. [If the function class F is suitably large then (4) is infeasible
if and only if 3G € F with G(Wy) <0 for all y € Z"? and G(d) > 0. The
function G is then called a dual ray. If (4) is feasible, then § is optimal in
(4) if and only if 3F' € F feasible in (5) such that qij = F(d).

e This result is analogous to the Strong Duality Theorem and Farkas’
Lemma for linear programming.



Generalized L-shaped Decomposition

e We rewrite (3) as
min{cz + 0|0 > Q(z),z € X} (7)

and represent the constraint # > O(x) by means of dual price functions.

e For each outcome &7 € =, we have a second stage problem

min{qy|Wy > h(¢) — T(&)z,y € Z1*} (8)
and associated dual

max{F(h(¢’) - T()x)|[F(Wy) < qy, Vy€Z? FeF}  (9)
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Feasiblity and Optimality Cuts

e We generate feasibility cuts of the form
G(h(€') = T(¢)z) <0
where G is the optimal dual solution of the Phase | problem:

min{et|Wy + It > h(&?) — T(&)x*}

e By solving (9) with x = z* for each ¢/ € 2, we generate optimality cuts
of the form

6> Zpﬂ'ﬁ%h(gj) —T(¢&)z)

where FY j =1,....r are optimal solutions of (9).
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Relaxed Master Problem

At each iteration, we solve the current problem:

min cx + 6

st 0> G, (M) —T(E)x), kj=1,...,s(),j=1,...,r
0> pFI(WE)-T(E ) k=1,...,t (10)
j=1
re X

We denote solutions to 10 by (z",0™). The algorithm terminates when
cx™ + 0" =Z", or (10) is infeasible.

Comment 4. (10) has ny + 1 variables, but a lot of constraints.
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Cutting Plane Algorithm

Let F be the set of nondecreasing superadditive functions such that F'(0) =
0. Then, (9) is equivalent to

max  F(h(¢) - T(¢)z)
S.t. F(’w]) S q;j, ] = 1,...,72,2 (11)
FelF

In a cutting plane procedure

e Valid inequalities are successively generated and added to the constraint
set

e LP relaxation are solved

e Process is repeated until current LP-solution is integral

e Cuts are of the form

ZF“) Jy; > FO(q), 1=1,...,7
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Cutting Plane Algorithm (2)

At termination, we have the function
i=1 i=1

that is a feasible and optimal solution of (11), where dual variables

(u1,. .. y Umgy bmog+15 - - - 7um2—|-7“)

are obtained from the LP-solution.
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Branch and Bound

Alternatively, we can solve the second stage problems using a branch-
and-bound algorithm. In this case, we generate price functions of the

form . . . . .
F(d) := minP{uZd—I— b'}, u' = (uj,...,u, ) >0

i=1,...,

for some finite P € N.

We generate these functions by solving the dual of
min{qy | Wy > d, k" <y <1},
for terminal node 7 and RHS d, given by
max{ud + uk’ —ul" | uW +u —u < q,u,u,w > 0}

and letting fi(d) = u'd + 'k — @'l* = u'd + b'.
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Stay Tuned...

e Apply a similar idea to the MIP Interdiction Problem (MIPINT):

min cx + dy + max hy
y

zeX

subject to Ey<g (12)
y <u(l—x)
Yy € YINT

where X = {z : Az > b,x € B"} and Yy € R7} defines some
integrality conditions on the lower-level variables.

e Using inner approximation, rather than outer approximation for lower-
level problem

— Maybe a Dantzig-Wolfe-like scheme



