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Problem and algorithm Introduction

MINLP Formulation

z = minimize s(x, y) +
N∑

n=1

rn(un, vn)

subject to hn(un, vn) = 0, n = 1, . . . , N, (P)
gn(un, vn) ≤ 0, n = 1, . . . , N

h
′
n(x, y, un, vn) = 0, n = 1, . . . , N

g
′
n(x, y, un, vn) ≤ 0, n = 1, . . . , N

xL ≤ x ≤ xU

y ∈ {0, 1}J

uL
n ≤ un ≤ uU

n , n = 1, . . . , N

vn ∈ {0, 1}mvn , n = 1, . . . , N

x ∈ RI, un ∈ Rmun
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Problem and algorithm Introduction

Model Reformulation

Linking variables are x, and y and constraints are h
′
n() and g

′
n().

Contraints hn(), gn(), h
′
n() and g

′
n() may be nonconvex.

To decompose P, create identical copies of x and y.
Given by {x1, x2, . . . , xN} and {y1, y2, . . . , yN}.
Linking variables are the same across all sub-models
(non-anticipativity).
x1 = x2 = . . . = xN

y1 = y2 = . . . = yN

Can be expressed in the model as:
xn − xn+1 = 0 n = 1, . . . , N − 1.
yn − yn+1 = 0 n = 1, . . . , N − 1.
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Problem and algorithm Introduction

zRP = minimize
N∑

n=1

wns(xn, yn) +
N∑

n=1

rn(un, vn)

subject to hn(un, vn) = 0, n = 1, . . . , N, (RP)
gn(un, vn) ≤ 0, n = 1, . . . , N

h
′
n(x

n, yn, un, vn) = 0, n = 1, . . . , N

g
′
n(x

n, yn, un, vn) ≤ 0, n = 1, . . . , N

xn − xn+1 = 0, n = 1, . . . , N − 1

yn − yn+1 = 0, n = 1, . . . , N − 1

xL ≤ xn ≤ xU, yn ∈ {0, 1}J

uL
n ≤ un ≤ uU

n , n = 1, . . . , N

vn ∈ {0, 1}mvn , n = 1, . . . , N

xn ∈ RI, un ∈ Rmun
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Problem and algorithm Introduction

Solution Methodology

General approach to globally optimize P:
Do branch and bound
Solve relaxations constructed by convexifying the nonconvex
terms.
Relaxations are generally weak.

Insight: Model is decomposable, can be used to derive tight bounds.
Use Lagrangean decomposition to decompose P into N′

sub-problems.
Use the solution of the sub-problems to obtain relaxation
strengthing cuts.
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Problem and algorithm Introduction

Solution Methodology...

Use branch-and-cut framework and solve problems at every node
to global optimality.
At a node, solve convex relaxation of original nonconvex model
with added cuts.
⇒ tighter lower bounds.
Obtain upper bounds by fixing binary variables and solving the
nonconvex NLP to global optimality.

Kumar Abhishek ( Lehigh University ) Lagrangean based Branch-and-Cut Feb 2007 6 / 14



lehigh-logo

Problem and algorithm Introduction

Lagrangean Relaxation:

zLRP = minimize
N∑

n=1

wns(xn, yn) +
N∑

n=1

rn(un, vn)+

N−1∑
n=1

(λ̄n
x)(xn − xn+1) +

N−1∑
n=1

(λ̄n
y)(yn − yn+1)

subject to hn(un, vn) = 0, n = 1, . . . , N, (LRP)
gn(un, vn) ≤ 0, n = 1, . . . , N

h
′
n(x

n, yn, un, vn) = 0, n = 1, . . . , N

g
′
n(x

n, yn, un, vn) ≤ 0, n = 1, . . . , N

xL ≤ xn ≤ xU, yn ∈ {0, 1}J

uL
n ≤ un ≤ uU

n , n = 1, . . . , N

vn ∈ {0, 1}mvn , n = 1, . . . , N

xn ∈ RI, un ∈ Rmun
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Decompose LRP into sub-problems SPn, n = 1, . . . , N:

zn = minimize wns(xn, yn) + rn(un, vn)+
(λ̄n

x − ¯λn−1
x)(xn) + (λ̄n

y − ¯λn−1
y)(yn)

subject to hn(un, vn) = 0 (SPn)
gn(un, vn) ≤ 0

h
′
n(x

n, yn, un, vn) = 0

g
′
n(x

n, yn, un, vn) ≤ 0

xL ≤ xn ≤ xU, yn ∈ {0, 1}J

uL
n ≤ un ≤ uU

n

vn ∈ {0, 1}mvn

xn ∈ RI, un ∈ Rmun
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Problem and algorithm Introduction

Using solution of Lagrangean sub-problems

Solve each sub-problem SPn to global optimality for fixed λ.∑N
n=1 z∗n = zLB is a valid lower bound for P.

Tightest possible lower bound obtained from the solution of the
lagrangean dual:
zD = maxλ̄ zLB.
Hard problem to solve...
Instead, use a heuristic by Fisher(1981) to iterate with different
values of Lagrange multipliers. Multiplier updating rules...
Therefore, use

∑N
n=1 zL∗

n = zLB, where L∗ is the highest valued
lower bound on the global optimum of SPn.
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Using solution of Lagrangean sub-problems...

Optimality based cutting planes:
Let z∗n be the global optimum for SPn.

z∗n ≤ wns(x, y) + rn(un, vn) + (λ̄n
x − ¯λn−1

x)(x) + (λ̄n
y − ¯λn−1

y)(y)
(Cn)

Theorem
The cuts Cn, n = 1, . . . , N are valid for RP, and therefore for P.

In practice, z∗n is replaced by zL∗
n in Cn.

Cn is added to P.
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zP
′
= minimize s(x, y) +

N∑
n=1

rn(un, vn)

subject to hn(un, vn) = 0, n = 1, . . . , N, (P
′
)

gn(un, vn) ≤ 0, n = 1, . . . , N

h
′
n(x, y, un, vn) = 0, n = 1, . . . , N

g
′
n(x, y, un, vn) ≤ 0, n = 1, . . . , N

z∗n ≤ wns(x, y) + rn(un, vn)+
(λ̄n

x − ¯λn−1
x)(x) + (λ̄n

y − ¯λn−1
y)(y), n = 1, . . . , N

xL ≤ x ≤ xU, y ∈ {0, 1}J

uL
n ≤ un ≤ uU

n , n = 1, . . . , N

vn ∈ {0, 1}mvn , n = 1, . . . , N

x ∈ RI, un ∈ Rmun
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convexify constraints.. ⇒ convex relaxation of P
′
:

zR = minimize s̄(x, y) +
N∑

n=1

r̄n(un, vn)

subject to h̄n(un, vn) = 0, n = 1, . . . , N, (R)
ḡn(un, vn) ≤ 0, n = 1, . . . , N

h̄
′
n(x, y, un, vn) = 0, n = 1, . . . , N

ḡ
′
n(x, y, un, vn) ≤ 0, n = 1, . . . , N

z∗n ≤ wns̄(x, y) + r̄n(un, vn)+
(λ̄n

x − ¯λn−1
x)(x) + (λ̄n

y − ¯λn−1
y)(y), n = 1, . . . , N

xL ≤ x ≤ xU, y ∈ {0, 1}J

uL
n ≤ un ≤ uU

n , n = 1, . . . , N

vn ∈ {0, 1}mvn , n = 1, . . . , N

x ∈ RI, un ∈ Rmun
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For specific nonconvex terms, special convex estimators exist
(Tawarmalani and Sahinidis, 2002).
Solve R to obtain lower bounds.

Theorem
The lower bound obtained by solving R is at least as strong as the one
obtained by solving a convex relaxation of P obtained by convexifying
the nonconvex terms.
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Obtaining lower bound by this procedure is computationally
expensive.
But this reduces the number of nodes in the tree search
significantly...
Can decompose to N

′
< N sub-problems

Branching in the algorithm is done on the linking variables x and y.
CONOPT 3.0 and BARON 7.2.5 used for solving NLP problems.
CPLEX 9.0 used for solving LP and MILP problems.
DICOPT and BARON 7.2.5 used for solving MINLP problems.
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