FilMINT: A Linearizations-based MINLP Solver

Kumar Abhishek¹ Sven Leyffer² Jeff Linderoth³

¹ISE Department Lehigh University kua3@lehigh.edu

²Mathematics and Computer Science Division Argonne National Laboratory leyffer@mcs.anl.gov

> ³ISE Department Lehigh University jt13@lehigh.edu

INFORMS Annual Meeting, Pittsburgh. Nov 07, 2006

MINLP Formulation

$$z_{\mathsf{MINLP}} = \text{minimize} \quad f(x, y)$$
 subject to $g_j(x, y) \leq 0, \quad j = 1, \dots, m,$ (MINLP) $x \in X, y \in Y \cap \mathbb{Z}^p,$

where

$$X \stackrel{\text{def}}{=} \{x \mid x \in \mathbb{R}^n, Dx \le d\},$$

$$Y \stackrel{\text{def}}{=} \{y \mid y \in \mathbb{R}^p, Ay \le a, y^l \le y \le y^u\}.$$

- \bullet f, g_i are twice continuously differentiable (convex) functions.
- x and y are continuous and discrete variables respectively.
- An NP-hard problem.
- A number of interesting applications. . .

Motivation

- LP/NLP Algorithm by Quesada and Grossmann [1992].
- Early implementation by Leyffer [1993]: 10 x faster than OA.
- Advent of modern, flexible Branch and Cut framework.
- Want to use MILP framework's advanced features for our problem.
- Steady improvements in nonlinear programming solvers.
- FilMINT uses FilterSQP, a robust, active set solver for solving NLPs, and MINTO for the MILP framework.
- In order to describe the algorithm, we next define some problems.

NLP subproblem for a fixed y (say y^k)

$$z_{\mathsf{NLP}(y^k)} = \text{minimize} \quad f(x, y^k)$$
 subject to $g_j(x, y^k) \le 0 \quad j = 1, \dots, m,$ $(\mathsf{NLP}(y^k))$ $x \in X.$

- \Rightarrow Solution is x^k .
 - NLP(y^k) feasible \Rightarrow Upper Bound.
 - If NLP(y^k) infeasible, NLP solver detects this and gives solution to:

Feasibility subproblem for fixed y^k

minimize
$$\sum_{j=1}^{m} w_j g_j(x, y^k)^+,$$
 (NLPF(y^k))

subject to $x \in X$.

NLP Relaxation for a node with bounds (l, u) on y

$$z_{\mathsf{NLPR}(l,u)} = \text{minimize} \quad f(x,y)$$

$$\text{subject to} \quad g_j(x,y) \leq 0 \quad j=1,\ldots,m, \qquad \qquad (\mathsf{NLPR}(l,u))$$

$$x \in X, y \in Y,$$

$$l \leq y \leq u.$$

• Convexity of f and $g_i \Rightarrow$ linearizations about any point (x^k, y^k) outer-approximate the feasible set, and underestimate the objective function.

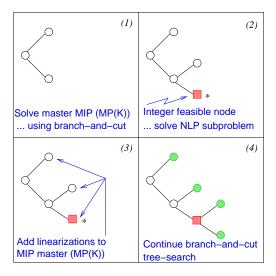
$$f(x^{k}, y^{k}) + \nabla f(x^{k}, y^{k})^{T} \begin{bmatrix} x - x^{k} \\ y - y^{k} \end{bmatrix} \leq \eta$$

$$g_{j}(x^{k}, y^{k}) + \nabla g_{j}(x^{k}, y^{k})^{T} \begin{bmatrix} x - x^{k} \\ y - y^{k} \end{bmatrix} \leq 0 \quad j = 1, \dots, m.$$
(OA(x_k, y_k))

Outer-Approximation based MILP Master Problem

$$\begin{split} z_{\mathsf{MP}(\mathcal{K})} &= \mathsf{minimize} \quad \eta \\ & \mathsf{subject to} \quad f(x^k, y^k) + \nabla f(x^k, y^k)^T \left[\begin{array}{c} x - x^k \\ y - y^k \end{array} \right] \leq \eta \ \, \forall (x^k, y^k) \in \mathcal{K} \qquad (\mathsf{MP}(\mathcal{K})) \\ & g_j(x^k, y^k) + \nabla g_j(x^k, y^k)^T \left[\begin{array}{c} x - x^k \\ y - y^k \end{array} \right] \leq 0 \ \, \forall (x^k, y^k) \in \mathcal{K} \quad j = 1, \dots, m \\ & x \in X, y \in Y \cap \mathbb{Z}^p. \end{split}$$

LP/NLP based Branch and Bound Algorithm



Computational Experiments and features explored

- More than 250 MINLP instances from various sources.
- Classified as easy (< 1 min), moderate (1 min 1 hour), and hard
 (> 1 hour) using MINLP-BB, a nonlinear branch-and-bound solver.
- Ran with 4 hour time limit on processors with 1.8GHz clockspeed and 2 Gb RAM.
- Show performance profiles to summarize the results.
- Probability that solver *i* is at most *x*-times worse than the best.
- Time used as metric for moderate instances, and solution value (gap to best known upper bound) for hard instances.

We now show the features explored with FilMINT:

- MILP features
- Linearization management.
- Linearization generation.

MIP features

- Preprocessing the master problem.
- Cutting planes use cut generation routines in MINTO.
- Primal heuristic use the diving based heuristic in MINTO.
- Branching rules
 - Maximal fractional branching.
 - Strong branching.
 - Pseudo-cost based branching.
- Node selection strategies
 - Best bound.
 - Depth first.
 - Best estimate.
 - Adaptive (best bound + best estimate).

Performance Profiles

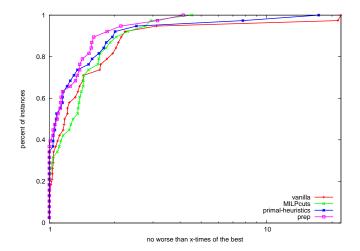


Figure: Effect of cuts, heuristics and preprocessing for moderate instances.

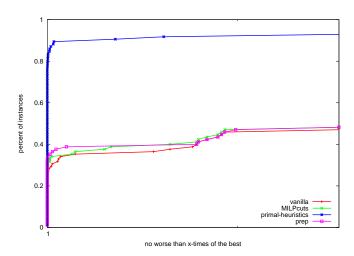


Figure: Effect of cuts, heuristics and preprocessing for hard instances.

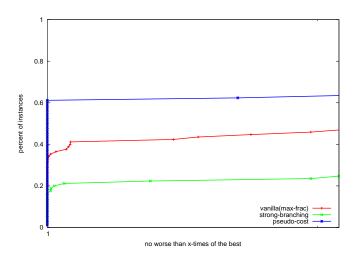


Figure: Effect of branching rules for hard instances.

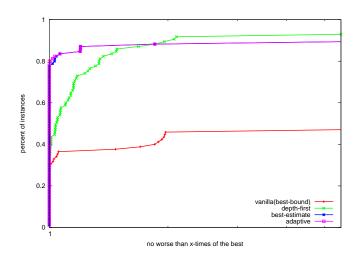


Figure: Effect of node selection rules for hard instances.

Managing linearizations

Large number of linearizations and other inequalities

- ⇒ increases the LP solve time and memory requirements.
 - Add linearizations only if violated by the current LP solution.
 - Remove constraints if they remain inactive for a long time.
 - Make use of MINTO's row management scheme to do this.
 - MINTO checks if constraint inactive for last 15 iterations.

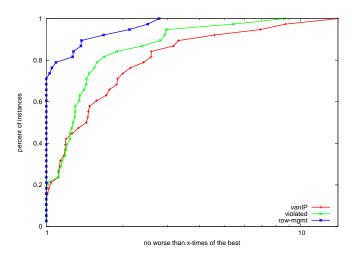


Figure: Effect of linearization management for moderate instances.

Performance Profiles

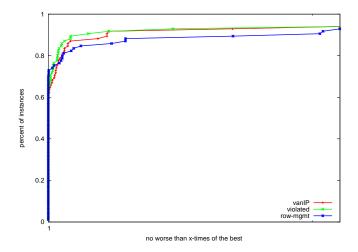
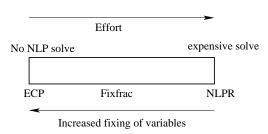


Figure: Effect of linearization management for hard instances.

Generating linearizations

We consider simple extensions to generate new linearizations.

- About which points can we generate linearizations.
- How much work to do to generate them.
- Linearizations from NLP(y^k) fixed at fractional y^k .
 - We call this fixfrac.
 - Do not have to wait for integer feasible solution.
- ECP method: do gradient evaluations and linearize instead of solving NLPs.
- We can solve an NLP by varying the number of variables that we fix.



Cut generation strategy depends on:

- ullet ho(d) probability of generation of new linearizations at a node.
 - Depends on the depth *d* of the node.
 - $\rho(d) \equiv \beta 2^{-d}$.
- At present: same strategy for fixfrac, ECP, and NLPR.

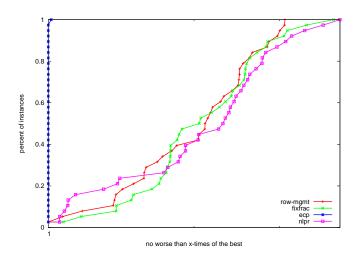


Figure: Effect of linearization generation for moderate instances.

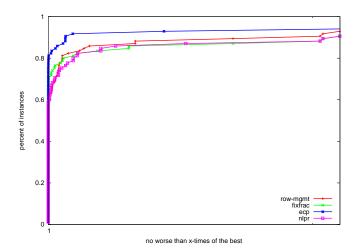


Figure: Effect of linearization generation for hard instances.

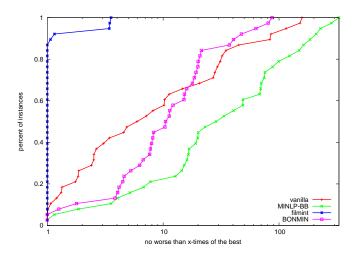


Figure: Comparing FilMINT with other solvers for moderate instances.

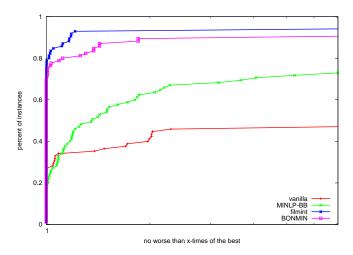


Figure: Comparing FilMINT with other solvers for hard instances.

Conclusions

- Introduce a new solver FilMINT, based on the LP/NLP algorithm in a branch-and-cut framework.
- Create using existing software components.
- Investigate impact of MIP features.
- New ways of generating and managing linearizations.
- FilMINT outperforms other MINLP solvers.
- Future research: cutting plane techniques for MINLP.

