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“Mathematics may be defined as the subject in which we never know what we are
talking about, nor whether what we are saying is true.”

Bernard Russell (1872-1970) –Mysticism and Logic, ch 4, 1917
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Introduction
Subadditive Dual

General mathematical duality

Duality is a tool to transform a mathematical object to another to introduce a new
approach to solve a problem.

Given a class of objects {O1,O2, ...}, a dual mapping Ψ : Oi→Oj has the property
Ψ2 = I.

Set Theory and Logic (De Morgan Laws)
Geomety (Pascal’s Theorem & Brianchon’s Theorem)
Combinatorial Math. (Graph Coloring)

Why do we need duality in mathematical programming and how can we characterize
it?
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Mathematical Programming Duality

Depending on its structure, it can be hard to solve a mathematical program.
In most cases, we must first develop procedures to get either a locally optimal
solution or, at least, a bound to estimate the solution.
Later, these estimates can be embedded within larger algorithms to find an
optimal solution.
If these results are also valid for a neighborhood of the problem, then they can
be used for sensitivity analysis and re-solving of a modified problem.

This methodology is the basis for what is called duality theory for mathematical
programs.
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Characterization

Consider a mathematical programming problem,

P(ζ,X) = min
x

ζ(x)
s.t x ∈ X

ζ : Φ→R, X ⊆ Φ.

Construct η : Θ→R, and U ⊆ Θ, such that for any x ∈ X, u ∈ U, we have
η(u) ≤ ζ(x). Then, the problem to get the best lower bound is

D(η,U) = max
u

η(u)

s.t u ∈ U
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Characterization

For a domain Ξ, let F (Ξ) = {f | f : Ξ→R} and X (Ξ) = {X | X ⊆ Ξ}. Then,

Dual Mapping
ψ : (F (Φ) × X (Φ))→(F (Θ) × X (Θ))

Primal Problem

P(ζ,X) = min
x

ζ(x)
s.t x ∈ X

ψ
−→

Dual Problem

D(η,U) = max
u

η(u)

s.t u ∈ U

such that D(η,U) ≤ P(ζ,X) for a given ζ and X.
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Characterization

D is called a dual function.
If in addition, D(η,U) = P(ζ,X) with P(ζ,X) > −∞, then it is called a strong
dual function.
If P(ζ,X)→−∞, then dual problem is infeasible.
if D(η,U)→∞, then primal problem is infeasible.
η and ζ are not necessarily in the same function “class”.
X and U may have different properties (i.e., X may be nonconvex and U
convex).
Therefore, ψ is usually not invertible.
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Linear Programming (LP) duality

For Φ = R
n, LP in standard form is a mathematical program where ζ is linear and X

is a polyhedron.

LP Primal Problem

PLP(A, b, c) = P(ζ,X)

ζ(x) = cx, c ∈ R
n,

X = {Ax = b, x ∈ R
n
+}.

ψLP
−→

LP Dual Problem

DLP(A, b, c) = D(η,U)

η(u) = ub, u ∈ R
m,

U = {uA ≤ c, u ∈ R
m}.
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LP duality properties

With an optimal solution pair x∗, u∗,
Proof of optimality: u∗b = cx∗.
Complementary slackness:

u∗
i (aix∗ − bi) = 0 ∀i

(cj − u∗′aj)x∗j = 0 ∀j

u∗
i is the shadow price of resource i.

cj − u∗aj is the reduced cost of process j.
By these properties, it is possible to develop

direct solution algorithms,
sensitivity analysis tools,
re-solving procedures,
decomposition algorithms to solve large-scale instances.
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Mixed-Integer Linear Programming (MILP) Duality

A MILP is a mathematical program ζ is linear and X is restricted to the form
(Zr × R

n−r ∩ P), r ≤ n and P ⊆ R
n is a polyhedron.

MILP Primal Problem

PMILP(A, b, c, r) = P(ζ,X)

ζ(x) = cx, c ∈ R
n,

X = {Ax = b, x ∈ Z
r × R

n−r
+ }.

ψMILP
−−−→

MILP Dual Problem

DLP(A, b, c, r) = D(η,U)

η =??,
U =??.

For mixed-integer linear programs (MILPs), a theory well integrated with
practice has not yet been introduced.
The dual problems for MILPs are either not effective or not computationally
tractable.
We don’t know a nice pair of (η,U) which will give a strong dual function.
However, we can construct a dual problem to find a strong dual function.
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Mixed-Integer Programming Duality

That is,

Dual Problem to get best dual function

max
η,U

D(η,U)

s.t D(η,U) ≤ P(ζ,X)

Note that, even if this problem could be solved, it would be useless for
postoptimal analysis. Why?
What we need is to derive a dual function that is also bounding the value
function in a neighborhood.
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The value function is
z(d) = PMIP(•, d, •, •)

We improve the dual mapping as

ψMIP : (Ln × ∪kX (Zk × R
n−k))→(F (Θ × Ω) × X (Θ × Ω)) such that

ψMIP(A, b, c, r) := (f ,U) with

f (u, d) ≤ cx, for all u ∈ U(d) ⊆ Θ, x ∈ S(d), and d ∈ Ω.

Ln = {f : R
n→R | f is linear},

S(d) = {x ∈ Z
r
+ × R

n−r
+ : Ax = d},

Ω = {d ∈ R
m : S(d) 6= ∅}.

Setting F(d) = D(f (u, d),U(d)), we obtain

F(d) ≤ z(d) for all d ∈ Ω

Menal Guzelsoy Mixed-Integer Programming Duality



Duality Theorem
Constructing Feasible Dual Functions
Sensitivity Analysis & Warm Starting

Software & Implementation
Proposed Study

Introduction
Subadditive Dual

Then, the problem to get a dual function - best for fixed right-hand-side (RHS) b, but
also valid for any RHS - is

Dual Problem to get best dual function
w(b) = max{F(b) | F(d) ≤ z(d), d ∈ R

m, F ∈ Υm ⊆ Λm}
or,

w(b) = max{F(b) | F(Ax) ≤ cx, x ∈ Z
r
+ × R

n−r
+ , F ∈ Υm ⊆ Λm}.

Λm = {f : R
m→R}.

This problem is guaranteed to give a strong dual function since F∗(d) = z(d)
when S(d) 6= ∅, and F∗(d) = 0 elsewhere, is a feasible solution. Therefore,
F∗(b) = z(b).
Can we further restrict Υm and still guarantee to get a strong dual function for
any RHS?

Lm: Linear functions? 6
Cm: Convex functions? 6
Fm: Subadditive functions? 4
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Example

z(d) = min x1 + x2 + x3 + x4
s.t 2x1 − 2x2 + x3 − x4 = d

x1, x2 ∈ Z+, x3, x4 ∈ R+

Furthermore, restricting Υm to lin-
ear functions, we get,

w(d) = max ud
s.t −1/2 ≤ u ≤ 1/2

u ∈ R

What is w(d) ?

21 3 4 5 6 70-1-2-3-4-5-6-7 d

z(d) z(d)

2

4

6

w(d) w(d)

Figure: Value functions of the problem and its
LP relaxation.
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Formulation

Denoting Γm = {F ∈ Fm | F(0) = 0},

Subadditive Dual Problem

w(d) = max F(d)

F(aj) ≤ cj j ∈ I
F̄(aj) ≤ cj j ∈ N \ I
F ∈ Γm

where aj is the jth column of A and

F̄(d) = lim sup
δ→0+

F(δd)

δ
.
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F̄

F̄ is the upper d-directional derivative of F at 0.
It is defined if F(δd) <∞, ∀ δ ≥ 0.
If it is defined,

Regular limit can be substituted with limsup.
It is positively homogeneous as for any λ > 0, F̄(λd) = λF̄(d).
F(λd) ≤ F̄(d)λ, λ ≥ 0.
F is always dominated by F̄

21 3 4 5 6 70-1-2-3-4-5-6-7 d

z̄(d) z̄(d)

z(d) z(d)
2

4

6

Figure: Directional derivative of the value function of the
example.
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Subadditive Dual

(Weak duality) For a given RHS b and a feasible solution pair (x, F), F(b) ≤ cx.
(Strong Duality) For a given RHS b, w(b) = z(b). Furthermore, if the primal
(or dual) is infeasible, then the dual (or the primal) is infeasible.

Example:

w(d) = max F(d)
F(2) ≤ 1

F(−2) ≤ 1
F̄(1) ≤ 1

F̄(−1) ≤ 1
F ∈ Γm

Consider the feasible functions:
F1(d) =
min{dd/2e, d + d − d/2e}
F2(d) =
min{−dd/2e,−d − d − d/2e}

21 3 4 5 6 70-1-2-3-4-5-6-7 d

z(d) z(d)

F(d)F(d)
2

4

6

Figure: Observe that F(d) = max{F1(d), F2(d)} is
an optimal dual function on some line segments and
feasible otherwise.
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Properties

If F is an optimal dual solution, we can define the reduced costs.

cj − F(aj), j ∈ I, cj − F̄(aj), j ∈ N\I

Furthermore, if x is an optimal primal solution, we can define the
complementary slackness conditions.

xj(cj − F(aj)) = 0, ∀j ∈ I
xj(cj − F̄(aj)) = 0, ∀j ∈ N\I

If F ∈ Γm, the inequality
X

j∈I
F(aj)xj +

X

j∈N\I

F̄(aj)xj ≥ F(d)

is a valid inequality for MILP with RHS d.
Any valid inequality is either equivalent or dominated by an inequality in the
form above (subadditive representation).
For and d,

conv(S(d)) = {x :
X

j∈I
F(aj)xj +

X

j∈N\I

F̄(aj)xj ≥ F(d), F ∈ Γm, x ≥ 0}
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Methods

Neither the general dual problem nor the subadditive dual problem is a
manageable program and can be solved with a direct approach.
There are a number of ways we can utilze to get a feasible (and optimal in some
cases) dual functions.

Relaxation algorithms
Transformation algorithms
Primal solution algorithms
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Methods

The Value Function (Jeroslow & Blair -77/79/82/84, Blair -95, Williams -96)
Cutting Plane/Gomory’s Procedure (Gomory -69, Chvátal -73, Wolsey -81)
Group Relaxation (Gomory -69, Johnson -73, Klabjan -02)
Lagrangian Relaxation (Fisher -81, Jeroslow & Blair -79, wolsey -81)
Linear Representation (Jeroslow & Blair -78, Wolsey -81, Lasserre -04)
Generating Functions (Lasserre -04)
Branch-and-Bound (Wolsey -81)
Branch-and-Cut -

Menal Guzelsoy Mixed-Integer Programming Duality



Duality Theorem
Constructing Feasible Dual Functions
Sensitivity Analysis & Warm Starting

Software & Implementation
Proposed Study

The Value Function
Gomory’s Procedure
Branch-and-Cut

What do we know about the value function?

It is subadditive over Ω.
It is piecewise polyhedral.
For an ILP problem, it can be obtained by a finite number of limited operations
on the elements of RHS:

(i) multiplication with rationals
(ii) nonnegative rational combinations
(iii) rounding up

9

=

;

Chvátal forms.

(iv) taking the maximum

9

>

>

=

>

>

;

Gomory forms.
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Example: The value function of the example with all variables assumed to be integer
is zIP(d) = max{dd/2e, d − d/2e} and is clearly a Gomory function.

21 3 4 5 6 70-1-2-3-4-5-6-7 d

2

4

6

zIP(d)
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Jeroslow Formula

There is one-to-one correspondence between ILP instances and Gomory
functions.
For MILP case, the value function z still can be represented by a Gomory
function if cj = 0, j ∈ N\I or otherwise, can be written as a minimum of
finitely many Gomory functions.
Jeroslow formula is a closed-form equivalent of the value function consisting of
a Gomory function and a correction term.

Example: The value function of the example is

z(d) = min

8

<

:

max
nl

dde
2

m

,
l

−dde
2

mo

+ dde − d,

max
nl

−d−de
2

m

,
l

d−de
2

mo

+ dde + d

9

=

;
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There is a Chvátal function that is optimal to the subadditive dual of an ILP with
RHS b ∈ ΩIP and zIP(b) > −∞.
The procedure:
In iteration k, we solve the following LP

zIP(b)k−1 = min cx
s.t. Ax = b

Pn
j=1 f i(aj)xj ≥ f i(b) i = 1, ..., k − 1

x ≥ 0

The kth cut, k > 1, is dependent on the RHS and written as:

f k(d) =

& m
X

i=1

λk−1
i di +

k−1
X

i=1

λk−1
m+if i(d)

’

where λk−1 = (λk−1
1 , ..., λk−1

m+k−1) ≥ 0
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Assume that b ∈ ΩIP, zIP(b) > −∞ and the algorithm terminates after k + 1
iterations.
If uk is the optimal dual solution to the LP in the final iteration, then

Fk(d) =
m

X

i=1

uk
i di +

k
X

i=1

uk
m+if i(d),

is a Chvátal function with Fk(b) = zIP(b) and furthermore, it is optimal to the
subadditive ILP dual problem.

Menal Guzelsoy Mixed-Integer Programming Duality



Duality Theorem
Constructing Feasible Dual Functions
Sensitivity Analysis & Warm Starting

Software & Implementation
Proposed Study

The Value Function
Gomory’s Procedure
Branch-and-Cut

Example: Let b = 3. At first iteration, we add the constraint

d2/2ex1 + d − 2/2ex2 + d1/2ex3 + d − 1/2ex4 ≥ d3/2e

from the weight λ1 = 1/2, i.e., the cut x1 − x2 + x3 ≥ 2. After resolving, we get an
integer primal solution with the dual solution u = (0, 1). Then the corresponding
optimal dual function is:

F1(d) = 0d + 1dd/2e = dd/2e

What does this mean?
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The algorithm

In a typical branch-and-bound,
The original feasible region P is divided into a partition P1, ...,Pk such that
P ≡ ∪kPk.
At each tree node, that corresponds to a member Pt, we basically solve an LP
relaxation to get a lower bound.
According to the optimal solutions of the LP relaxations of analyzed nodes, we
keep an upper bound obtained from the optimal solution values of those nodes
that yield a feasible solution to original problem.
We prune node t

feasibly if it has either an optimal solution value greater than the current upper
bound or an optimal solution which is a feasible solution to the original problem,
in-feasibly if it is just infeasible.

Algorithm exits when all partition members are analyzed it is guaranteed that
iterating further would not decrease the upper bound.

In a typical branch-and-cut, we also generate cuts at each node.
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It is easy to get a feasible dual function from branch-and-bound.
For branch-and-cut, we have to take care of the cuts.

Case 1: Do we know the subadditive representation of each cut?
Case 2: Do we know the RHS dependency of each cut?
Case 3: Otherwise, we can use some proximity results or the variable bounds.
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Case 1

If we know the subadditive representation of each cut:
At a node t, we solve the LP relaxation of the following problem

zt(b) = min cx
s.t Ax ≥ b

x ≥ lt

−x ≥ −gt

Htx ≥ ht

x ∈ Z
r
+ × R

n−r
+

where gt, lt ∈ R
r are the branching bounds applied to the integer variables and

Htx ≥ ht is the set of added cuts in the form
X

j∈I
Ft

k(ak
j )xj +

X

j∈N\I

F̄t
k(ak

j )xj ≥ Ft
k(σk(b)) k = 1, ..., ν(t),

ν(t): the number of cuts generated so far,
ak

j , j = 1, ..., n: the columns of the problem that the kth cut is constructed from,
σk(b): is the mapping of b to the RHS of the corresponding problem.
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Case 1

Let T be the set of leaf nodes, ut, ut, ut and wt be the dual feasible solution used to
prune t ∈ T . Then,

F(d) = min
t∈T

{utd + utlt − utgt +

ν(t)
X

k=1

wt
kFt

k(σk(d))}

is an optimal dual function, that is, z(b) = F(b).
We can restore the subadditivity if the variables are bounded and the branching
bounds are implied to these bounds.
However, it is very hard to know the subadditivity characterization of each cut.
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Case 2

If we know the RHS dependencies of each cut:
We know for

Gomory fractional cuts.
Knapsack cuts
Mixed-integer Gomory cuts
?

Then, we do the same analysis as before.
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Case 3

In the absence of subadditive representations or RHS dependencies:
For each node t ∈ T , let ĥt be such that

ĥt
k =

n
X

j=1

ht
kjx̂j with x̂j =



lt
j if ht

kj ≥ 0
gt

j otherwise , k = 1, ..., ν(t)

where ht
kj is the kth entry of column ht

j. Furthermore, define

h̃t =
n

X

j=1

ht
j x̃j with x̃j =



lt
j if wtht

j ≥ 0
gt

j otherwise .

Then the function

F(d) = min
t∈T

{utd + utlt − utgt + max{wth̃t, wtĥt}}

is a feasible dual solution and hence F(b) yields a lower bound.
This approach is the easiest way and can be used for bounded MILPs (binary
programs), however it is unlikely to get an effective dual feasible solution for
general MILPs.
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Post-optimal analysis

One may want to study the effect of small data variation on the outcome in order
to determine how sensitive the decision made is to perturbation.
For instance, it may be desirable to see how the optimum behaves when
available resources change unexpectedly.
Various modeling approaches such as robust or stochastic optimization have
been developed to decrease the impact of uncertainty.
However, the possible scenarios still may not be known a priori or it may be
required to optimize again when new problem data become certain

Menal Guzelsoy Mixed-Integer Programming Duality



Duality Theorem
Constructing Feasible Dual Functions
Sensitivity Analysis & Warm Starting

Software & Implementation
Proposed Study

Basic Observations
Change in right-hand-side
Change in objective function
Warm Starting

Post-optimal analysis

We discuss the following questions:
Local sensitivity analysis: For what ranges of problem data does the current
solution remain optimal?
Global parametric analysis How can we efficiently get all the optimal solutions
in a given range of problem data?
Warm Starting: If the current solution is not optimal, can we make use of the
information collected through the solution process to get or estimate the optimal
solution of the modified problem?

In the LP case, these questions are well-studied, however the techniques introduced
for MILPs are very limited and depend on the sufficient optimality conditions
associated with the solution procedure.
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Basic Observations:

Let (x∗,F∗) (with F∗ subadditive) be the optimal primal-dual solution pair for MILP
with (A, b, c).

(A, b, c) → (A, b̃, c):
1 F∗ remains dual feasible.
2 Let Y∗ = {y | F∗(Ay) = cy}. If F∗ is still optimal, then the new optimal

solution is in Y∗.
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Basic Observations:

(A, b, c) → (A, b, c̃):
1 x∗ remains primal feasible.
2 If F∗(aj) ≤ c̃j for all j, then F∗ remains dual feasible.
3 If F∗(aj) ≤ c̃j when x∗j = 0 and c̃j = cj otherwise, then x∗ remains optimal.
4 If cj ≤ c̃j when x∗j = 0 and c̃j = cj otherwise, then x∗ remains optimal.
5 Let the vector g denote the upper bounds on the variables. If c̃j ≤ cj when

x∗j = g∗
j and c̃j = cj otherwise, then x∗ remains optimal.

Note that if one drops the subadditivity requirement of F∗, then (2) and (3) are no
longer valid.
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Basic Observations:

(A, b, c) → (Ã, b̃, c̃):
1 If the original problem is a relaxation of the new problem, then x∗ remains

optimal.
2 When a new activity (c̃n+1, ãn+1) is introduced, (x∗, 0) remains feasible.
3 Furthermore, if F∗(ãn+1) ≤ c̃n+1, then (x∗, 0) remains optimal since F∗

remains dual feasible and cx∗ = F(b).
4 When a new constraint (ãm+1) with RHS b̃m+1 is introduced, if x∗ is still

feasible, then it remains optimal.
5 Furthermore, let the function F̃ : R

m+1 → R
m be defined by

F̃(d, dm+1) = F∗(d). Then F̃ is dual feasible for the new problem since F̃ is
subadditive and F̃(aj, ãm+1

j ) = F∗(aj) ≤ cj, j ∈ I.
Note that if one drops the subadditivity requirement of F∗, then (3) is no longer valid
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Cutting Plane Algorithm

For an ILP with (A, b, c), assume in iteration (k − 1) algorithm terminates and
we know either the subadditive representations or the RHS dependencies.
Let Bk be the final optimal basis and define the function
ϕk(d) = (d, f 1(d), ..., f k−1(d)).
Note that when we change the RHS to ϕk(b̃), existing cuts are modified to be
valid for SIP(b̃) and Bk still remains dual feasible.

If x̃ = Bk−1
ϕk(b̃) ≥ 0 and integer, then it is an optimal solution to the modified

ILP problem with (A, c, b̃).
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Branch-and-Cut Algorithm

Let Bt be the optimal basis for the LP relaxation of leaf node t and define the
function

ϕt(d) = (d, Ft
1(σ1(d)), ..., Ft

ν(t)(σν(t)(d)))

to shift the RHS of node t when b is modified. Furthermore, let

ωt(d) = utd + utlt − utgt +

ν(t)
X

k=1

wt
kFt

k(σk(d))

with current feasible solution (ut, ut, ut,wt
k).

Let F be the dual function derived as we discussed before and let the upper
bound function be

V(d) = min
t

{ωt(d) | Bt−1
ϕt(d) ≥ 0 and

“

Bt−1
ϕt(d)

”

j
integer for all j ∈ I}.

For a MILP with (A, b̃, c), if V(b̃) = F(b̃), then z(b̃) = V(b̃). Otherwise,
F(b̃) ≤ z(b̃) ≤ V(b̃).
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Branch-and-Cut Algorithm

The sufficient conditions above are unlikely to be satisfied, even if the current
solution remains optimal
Therefore, instead of testing sufficiency for a problem with b̃, it might be better
to determine the ranges over which the RHS can be shifted while the current
solution remains optimal.
For each feasibly pruned leaf node t, let the range ∆t(b) be such that
Bt−1

(ϕt(b) + ϕt(∆t(b))) ≥ 0. Then, the current solution remains optimal for
d ∈ ∩t[b + ∆t(b)].
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Branch-and-Cut Algorithm

Even if the above tests fail, one can still get useful bounds on the optimal
solution value.
For instance, Wolsey and Schrage[85] show that data collected from the
branch-and-bound tree can be used to get a lower bound for modified problem
instance.

Utilizing the same tree with the new RHS, they get bounds for each modified
subproblem from LP relaxation dual solutions.
These bounds are are then recursively added to yield the best possible lower bound
for the modified problem

There are some other tools for sensitivity analysis that are independent of the
solution algorithm

Assume in ILP, SIP(d) = {x ∈ Z
n
+ |Ax ≥ d}. Let ∆(A) be the maximum absolute

values of the determinants of the square submatrices of A. Then,

|zI(b) − zI(b̃)| ≤ n∆(A)(‖b − b̃‖∞ + 2)‖c‖1 .
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Cutting Plane Algorithm

Let Ak be the constraint matrix of the last subproblem.
If c̃Bk Bk−1Ak − c̃ ≥ 0, then the current solution is also optimal to the problem
with (A, b, c̃).
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Branch-and-Cut Algorithm

Let

W(q) = min
t
{qxt |xt = Bt−1

ϕt(b) ≥ 0 and
“

Bt−1
ϕt(b)

”

j
integer for all j ∈ I}.

be the upper bound function
Furthermore, let

G(q) = min
t
{ωt(b) | qj ≥ utaj + ut

j − ut
j + wtht

j, j = 1, ..., n}.

If W(c̃) = G(c̃), then Z(c̃) = W(c̃). Otherwise, G(c̃) ≤ Z(c̃) ≤ W(c̃).
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Warm starting is a technique to collect information while the solution procedure
of one instance is in progress and to make use of this information to initiate the
solution procedure for a related problem.
In the LP case, warm starting information consists of the optimal basis of the
previous problem.
Similarly, we define the warm starting information for a MILP with the
components of the solution algorithm.
For instance, in branch-and-cut algorithm, it refers to a given subtree (starting
partition), final basis of each node and enough information to shift each cut to
be valid for a given modification.

Note that any subtree of the previous solution algorithm can be used as a starting
partition.

Menal Guzelsoy Mixed-Integer Programming Duality



Duality Theorem
Constructing Feasible Dual Functions
Sensitivity Analysis & Warm Starting

Software & Implementation
Proposed Study

Basic Observations
Change in right-hand-side
Change in objective function
Warm Starting

Warm Starting Procedure

Let Tw is given as an input to resolve a modified problem.
Check if Tw is a partition of the modified problem.
Check the feasibility of current LP basis of each leaf node for the LP relaxation
of modified node.
Check the sufficient conditions to see if a resolve is needed.
Get upper and lower bounds. Form a candidate list with these nodes and
continue branch-and-cut algorithm.
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SYMPHONY

SYMPHONY software framework which is a customizable open-source parallel
MILP solver maintained by Prof. Ralphs.
It was first introduced as a flexible, parallel solver for hard combinatorial
problems.
The default solver behaviors can be altered with hundreds of parameters and
over 50 user callback functions.
The user can have complete control over branching rules, cutting plane
generation, management of the cut pool, processing of several tree nodes, diving
strategies, and limited column generation.
SYMPHONY includes modules for solving the

Traveling Salesman Problem,
Vehicle Routing Problem,
Set Partitioning Problem,
Mixed Postman Problem,
Matching Problem,
Capacitated Network Routing Problem and
Multi-Criteria Knapsack Problem.
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SYMPHONY

Recently, SYMPHONY has been fully integrated with the libraries of the
Computational Infrastructure for Operations Research (COIN) repository, including

The Cut Generation Library (CGL) for generating cutting planes,
The Open Solver Interface (OSI), a C++ class that provides a standard API for
accessing a variety of solvers.
SYMPHONY is now implemented as a callable library and can be used as a
stand-alone generic MILP solver accessible either through calls to the native C
subroutines of the API or through a C++ class derived from the COIN-OR OSI.
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Callable Library

Through callable library, SYMPHONY can be easily embedded to any other
code to be used with any other algorithms.
The main functions are:

sym_open_environment()
sym_parse_command_line()
sym_load_problem()
sym_explicit_load_problem()
sym_solve()
sym_resolve()
sym_mc_solve()
sym_close_environment()
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Callable Library

As an example of the use of the library functions, Figure shows the code for
implementing a generic MILP solver with default parameter settings.

�������������
	���������
�������������
�������
������
�
��� �! �"�������
�#$���%"����&��'�( ��� �! �#�'�"��% �"$������
�#�����"����)	*�,+
��� �! $'���
 � "- -��#.��������/- �0-����"1	2'
�3��
������4��
������,+
��� �! �0�#���/� $'�
�#�5%0�"��6	7'8�,+
��� �! � #�0��-")	2'8�8+
��� �! -��0�# � "- �"��-����
�#$����"����9	7'8�,+

:

It is possible to read an MPS or GMPL/AMPL file.
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OSI Interface

�������������
	���������
�������������
�������
������
�
; � ��< � �!<�#�0��-"�
�=����-"�
�>-����" � ��+
� ��?7'���
 � "�@-#A���%����/�B%�A��")	C��
������3��
������,+
� ��?C0�#���/�D-
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:

Menal Guzelsoy Mixed-Integer Programming Duality



Duality Theorem
Constructing Feasible Dual Functions
Sensitivity Analysis & Warm Starting

Software & Implementation
Proposed Study

SYMPHONY
Implementation
Experimental Results
Applications
Sensitivity Analysis

Implementation

We have added to SYMPHONY warm starting capability and basic sensitivity
analysis tools.
For now, because of the complications we have described before, these methods
can be invoked only for rim vectors modifications and when cut generation is
disabled (only for modifying the right-hand-side).
We intend to extend these techniques to other possible modification and to be
equipped with advanced sensitivity analysis tools.
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Warm Starting

When user asks SYMPHONY to keep warm starting information,
The warm start structure starts to keep the description of the tree as well as the
other auxiliary data needed to restart the computation. This description contains

complete information about the subproblem corresponding to each node,
the branching decisions,
and warm start information for the LP relaxation of the subproblem.

All information is stored compactly using SYMPHONY’s native data structures
by storing only the differences between a child and its parent.
In addition to the tree itself, other relevant information such as the current
bounds and the best feasible solution found so far.

The user
can save a warm start to disk,
read one from disk,
or restart the computation from any warm start after modifications.
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Modifying Parameters

The solution process can be interrupted with a satisfied condition and some
regulators of the algorithm are changed.
The tree manager simply traverses the tree and loads in leaf nodes marked as
candidates for processing.

���-�E�������F	G��������
�������������
�������
������
�
; � ��< � �!<�#�0���"�
�=�����"�
�>-����" � ��+
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 � "�@-#.��������/�B%����")	H��
������3��
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� �1? � "���< � ��D-��
-���6	C; � ��< � �%J�����/�J���
 � ��J�"�� � ��5%0�"9�3��
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-���6	C; � ��< � �!<�"���
����%<��-
-���-"�� � �ML�N�D-O�P� �J�=$Q�<�O- �<�N-R�Q-@�P!�,+
� �1? � "���< � ��D-��
-���6	C; � ��< � ��S�"�"�'�T���
$�8<�����
��F�3��
�K�"%�,+
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:
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Modifying Problem Data

In this case, SYMPHONY makes corresponding modifications to the leaves of
the current search tree to allow execution of the algorithm to continue.
To initialize the algorithm, we first check which partition of final tree should be
used. We have four options:

Take the first k nodes.
Take all nodes above level k in the tree.
Take the first p% of the nodes.
Take all nodes above the level p% of the tree depth.

If any of these are chosen, all nodes but those in chosen subtree are discarded
and the computation is warm started from this given subtree.
Then, each leaf node, regardless of its status after termination of the previous
solve call, are inserted into the queue of candidate nodes and reprocessed with
the changed rim vectors.
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Modifying Problem Data

Use of SYMPHONY’s warm start capability.
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Modifying Problem Data

Use of SYMPHONY’s warm start capability.
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Sensitivity Analysis

Our warm start structure is also equipped to collect more information, namely,
the feasible solutions found so far and
the dual solutions of each node.

In order to save memory, these solutions are kept in sparse form.
For any modification, upper and lower bounds are obtained by sufficient
optimality conditions.
For modifications to the right-hand-side, a better lower bound is obtained by
Wolsey and Schrage’s algorithm.
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Sensitivity Analysis

Performing sensitivity analysis with SYMPHONY.
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Introduction

As a small demonstration of warm starting we tested the code above on the MIPLIB
file p0201 where the original corresponding coefficients vary between 300 and 500.

CPU Time Search Tree Nodes
Generate warm start 16 100
Solve original problem (from warm start) 1 106
Solve modified problem (from scratch) 27 166
Solve modified problem (from warm start) 4 195

Table: Warm starting a computation with p0201
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Using Warm Starting: Change in the Objective Function
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Table: Warm start after 1% modification on a random subset of objective coefficients of random
size. Warm start consists of nodes above the r% level of the tree, r ∈ {0, 50, 100}
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Using Warm Starting: Change in the Objective Function
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Table: Warm start after 10% modification on a random subset of objective coefficients of
random size. Warm start consists of nodes above the r% level of the tree, r ∈ {0, 50, 100}
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Using Warm Starting: Change in the Objective Function
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Table: Warm start after 20% modification on a random subset of objective coefficients of
random size and use the nodes above the r% level of the tree, r ∈ {0, 50, 100}
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Using Warm Starting: Change in the Objective Function

Black: without warm starting
White: with warm starting

Table: Warm start after random perturbation of +/ − 10% on a random subset of objective
coefficients of size 0.1n (left) and of size 0.2n (right)
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Example:Warm-Start on MIPLIB problems/RHS Case

Table: Warm start after random perturbation of +/ − 20% on a random subset of rhs of size
0.1m.
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Using Warm Starting: Change in the Right-hand Side

Table: Change rhs b of a knapsack problem between b/2 and 3b/2 and warm start using the
nodes above the 25% level of the tree.
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The ability to resolve after modifying problem data is not only useful for
sensitivity analysis but also has a wide range of applications in practice.

Decomposition methods
Stochastic MILP problems
Parametric MILP problems
Multicriteria MILP problems
Determining irreducibe infeasible subsystems

depend on solving a family of integer programs.
To illustrate the warm starting capability, we have implemented algorithms for
solving 2-stage stochastic integer programs and bicriteria integer programs.
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Stochastic Programming

Problem Tree Size Tree Size % Gap % Gap CPU CPU
Without WS With WS Without WS With WS Without WS With WS

storm8 1 1 - - 14.75 8.71
storm27 5 5 - - 69.48 48.99
storm125 3 3 - - 322.58 176.88
LandS27 71 69 - - 6.50 4.99
LandS125 37 29 - - 15.72 12.72
LandS216 39 35 - - 30.59 24.80
dcap233_200 39 61 - - 256.19 120.86
dcap233_300 111 89 0.387 - 1672.48 498.14
dcap233_500 21 36 24.701 14.831 1003 1004
dcap243_200 37 53 0.622 0.485 1244.17 1202.75
dcap243_300 64 220 0.0691 0.0461 1140.12 1150.35
dcap243_500 29 113 0.357 0.186 1219.17 1200.57
sizes3 225 165 - - 789.71 219.92
sizes5 345 241 - - 964.60 691.98
sizes10 241 429 0.104 0.0436 1671.25 1666.75

Menal Guzelsoy Mixed-Integer Programming Duality



Duality Theorem
Constructing Feasible Dual Functions
Sensitivity Analysis & Warm Starting

Software & Implementation
Proposed Study

SYMPHONY
Implementation
Experimental Results
Applications
Sensitivity Analysis

Bicriteria Programming

Menal Guzelsoy Mixed-Integer Programming Duality



Duality Theorem
Constructing Feasible Dual Functions
Sensitivity Analysis & Warm Starting

Software & Implementation
Proposed Study

SYMPHONY
Implementation
Experimental Results
Applications
Sensitivity Analysis

Sensitivity Analysis We report the results of testing the code above on the MIPLIB3
file flugpl. See Table 4.11 in the paper.
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Biciteria solver can also be used for complete parametric analysis of a single
objective coefficient. As an illustration of this type of sensitivity analysis, we applied
the followings:
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min −8x1 + ϕx2
s.t. 7x1 + x2 ≤ 56

28x1 + 9x2 ≤ 252
3x1 + 7x2 ≤ 105

x1, x2 ≥ 0, integral

ϕ range Z2(ϕ) x∗1 x∗2
(−∞,−16.000) 15ϕ 0 15
(−16.000,−8.000) −32 + 13ϕ 4 13
(−8.000,−2.667) −40 + 12ϕ 5 12
(−2.667,−1.333) −56 + 6ϕ 7 6
(−1.333,∞) -64 -8 0
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"If paradise on earth exists anywhere in the world, it cannot lie very far from here!"
Stefan Zweig quoting Amerigo Vespucci – A Land of The Future

or

"Even hallucinations have laws!"
Angels in America
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Duality theory for integer programming models is still far behind the
expectations and advances achieved for the linear programming case.
We have only a little information about the properties of dual functions,
It is not easy to get a dual function even from the primal solution algorithm.

For Gomory’s cutting plane algorithm, the rank of the cuts may be so large and
therefore, the formulas may be so nested
Consequently the difficulties in managing implementation issues for Lagrangian
relaxation quadratic counterpart the chances are good that convergence problems
would also exist
Klabjan’s formulation and the suggested algorithm is a considerable step however,
the row generation stage, which depends on enumeration of feasible vectors, makes
it a less preferable choice.
Currently, there is no easy way to extract an effective dual function from the
information produced by a branch-and-cut algorithm.

In a similar fashion, Lasserre’s natural dual formulation is useful in theory, but it
lacks the flexibility to be applied in practice.
The value function of a MILP remains as a closed box.
These difficulties complicate the sensitivity analysis and warm-starting.
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Can we further improve the subadditive dual theory to be more practical by
somehow restricting Γm or by other means?
Efficiency? Effectiveness? Consider the graphs:
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A linear dual function feasible for all d ∈ [d1, d2].
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Figure: A concave dual feasible function.

How can we combine them?
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Using the branch-and-cut algorithm, is there a way to derive a strong
subadditive dual function?
Can we restructure the branch-and-cut tree for this purpose?

Restructuring branch-and-cut tree to branching on cuts tree:

Branch And Cut Branching on Cuts
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What is the best strategy to choose Tw to warm start?
What is the most efficient way to deal with the additional difficulties associated
with a full-featured branch-and-cut algorithm, such as preprocessing and
reduced cost fixing.
How can we make further use of the information gathered from the
branch-and-cut tree for warm starting? For instance,

Assume that a feasible subadditive dual function F is obtained from the solution
procedure.
The RHS is modified b→b̃, and an upper bound UB(b̃) is known for zI(b̃).
If cj − F(aj) > 0 and

v =

&

UB(b̃) − F(b̃)
cj − F(aj)

’

> 0

for a column j, then there is an optimal solution x∗ with x∗j ≤ v − 1 for the modified
problem.
So, using reduced cost fixing over this function will preprocess/tighten the variable
bounds before warm starting.
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How can we make use of all the information gathered during the solution
procedure in order to extract the best sensitivity information, possibly at the cost
of losing the feasibility of dual function for all RHS.
Can we somehow derive a formula similar to Jeroslow’s that will extend the
subadditive dual solutions of ILP to MILP?
How about the relation between these dual formulations?
Are there specific dual formulations or dual functions optimal to some
structured problems?
Can we make use of MILP duality further to fill the gaps and to develop
methods analogous to those in LP duality theory?
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How can we use all the gathered information to come up with a dual feasible
function that will yield the best bound for a modified RHS?
Observe that the function obtained from Wolsey’ and Schrage’s algorithm is
nothing but another and probably better dual feasible function than the one
introduced before, since their algorithm also includes dual information coming
from the other nodes.
This formulation reveals the fact dual feasible function that can be obtained
from a branch-and-cut tree is not unique.

Menal Guzelsoy Mixed-Integer Programming Duality



Duality Theorem
Constructing Feasible Dual Functions
Sensitivity Analysis & Warm Starting

Software & Implementation
Proposed Study

Main Goals
Other Questions

Other Questions

For upper bound analysis, we believe that there is much more information that
can be extracted from the most common solution algorithm.
Note the feasible solutions xk, k ∈ K.

Clearly, when the objective function is modified, x =
P

i∈K λixi is another feasible
solution to the modified problem if x ≥ 0 and

P

i∈K λi = 1 for all λi ∈ Z.

Note that bicriteria optimization could be used for objective case parametric
programs. Can we extend the same idea to RHS and constraint matrix
parametric programs?
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