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MIP Formulation

Maximize

zMIP =
∑

j∈I

cjxj +
∑

j∈C

cjxj

subject to
∑

j∈I

aijxj +
∑

j∈C

aijxj ≤ bi i ∈ M, (1)

lj ≤ xj ≤ uj j ∈ N, (2)

xj ∈ Z+ j ∈ I, (3)

xj ∈ R+ j ∈ C. (4)
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Branching is Important

• Effective branching is more important near the top of the tree.

• We might want to evaluate more candidates near the top of the

tree.

• More candidates almost always result in smaller trees, but the

expense eventually causes an increase in running time.
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Strong Branching

• Select a set C of basic fractional variables to branch up and

down, and perform a specific number of dual simplex pivots on

each variable in this set.

• How do we choose the set C?

¦ xj for which the values are furthest from being an integer.

For 0-1 variable, this means those whose values are closest

to 0.5.

¦ xj for which the values are sufficiently fractional and the

objective function coefficients are the largest.

¦ xj for which the pseudocosts are the largest.
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Motivation

• Can we do better by taking into account the branching

information two-level deeper than the current local node?

• Can better branching decisions be made?

• “Ramp-Up”
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Two-Levels Deep Search Tree

z−+

ij z+−

ij z++

ij

zLP

z+

i z−
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z−−
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xj ≤ bx̂jc xj ≥ dx̂je xj ≤ bx̂jc xj ≥ dx̂je

xi ≥ dx∗
i exi ≤ bx∗

i c
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Definitions

• G−

i = {j ∈ F−

i |ρ−−

ij = 0, ρ−+
ij = 0}.

• G+
i = {j ∈ F+

i |ρ+−

ij = 0, ρ++
ij = 0}.

¦ The sets of indices of fractional variables in the

corresponding feasible LP relaxations two-levels deep.

• W(a, b) = {α1 min(a, b) + α2 max(a, b)}.

¦ Weighting function.

• Ds1s2

ij = zLP − zs1s2

ij , wheres1, s2 ∈ −, +.

¦ The degradation in LP relaxation value two-levels deep.
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Branching Rules

• Rule 1: Maximize Best Degradation

i
∗ = arg max

i∈F

(

max
j∈G

−

i

{W(D−−

ij , D
−+

ij )} + max
j∈G

+
i

{W(D+−

ij , D
++

ij )}

)

.

• Rule 2: Maximize Sum of Degradation

i
∗ = arg max

i∈F

8
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i

W(D−−
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−+
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i |

X
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+
i

W(D+−

ij , D
++
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Branching Rules

• Rule 3: Maximize Number of Infeasibility

i
∗ = arg max

i∈F
ηi.

• Rule 4: Maximize Degradation and Number of Infeasibility

i
∗ = arg max

i∈F

(

max
j∈F

−

i

{W(D−−

ij , D
−+

ij )} + max
j∈F

+
i

{W(D+−

ij , D
++

ij )} − βηi

)

.
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Variables’ Bound Fixing

Derivation Implication

ξ−i = 1 xi ≥ dx∗

i e

ξ+
i = 1 xi ≤ bx∗

i c

ρ−−

ij = 1 and ρ−+
ij = 1 xi ≥ dx∗

i e

ρ+−

ij = 1 and ρ++
ij = 1 xi ≤ bx∗

i c
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Clique Inequalities

Derivation Implication

ρ−−

ij = 0 (1 − xi) + (1 − xj) ≤ 1

ρ+−

ij = 0 (1 − xi) + xj ≤ 1

ρ+−

ij = 0 xi + (1 − xj) ≤ 1

ρ++
ij = 0 xi + xj ≤ 1
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Computational Results

Branching Rule Avg. Ranking

w/ Fix&Cut w/o Fix&Cut

One-Level 4.40 2.85

Rule 1 2.46 3.60

Rule 2 2.13 2.43

Rule 3 3.13 3.05

Rule 4 2.88 4.08

Table 1: Summary of Experiments
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Computational Results

Branching Rule # Evaluated Nodes

w/ Fix&Cut w/o Fix&Cut

MINTO Default 16974 16974

One-Level 8471 8471

Rule 1 1319 8946

Rule 2 946 8004

Rule 3 1571 8145

Rule 4 1191 8832

Table 2: Average Number of Evaluated Nodes in Solved Instances
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Computational Results

Branching Rule Avg. Integrality Gap

w/ Fix&Cut w/o Fix&Cut

One-Level 45.36 45.36

Rule 1 9.41 47.70

Rule 2 9.22 43.02

Rule 3 11.29 45.98

Rule 4 9.60 48.80

Table 3: Average Integrality Gap in Unsolved Instances
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Speed-Up

• Limit the number of simplex iterations on all fractional

variables at two-levels deep nodes.

• Limit the number of fractional variables on which to perform

simplex iteration both at one-level and two-levels deep node,

i.e. reduce the size of the candidate branching set.
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Computational Results

Branching Rule # Evaluated Nodes

(limit iter.) (limit frac.) (w/o limit)

One-Level 8608 8623 8471

Rule 1 9106 10422 8946

Rule 2 8321 10272 8004

Rule 3 8140 8337 8145

Rule 4 8668 10386 8832

Table 4: Average Number of Evaluated Nodes in Solved Instances
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Computational Results

Branching Rule Avg. Integrality Gap

(limit iter.) (limit frac.) (w/o limit)

One-Level 38.99 31.08 45.36

Rule 1 42.57 41.54 47.70

Rule 2 40.57 41.56 43.02

Rule 3 40.04 31.94 45.98

Rule 4 42.49 41.54 48.80

Table 5: Average Integrality Gap in Unsolved Instances
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Computational Results

Branching Rule Avg. Integrality Gap

(limit iter.) (limit frac.) (w/o limit)

One-Level 59.73 59.70 57.28

Rule 1 60.05 62.99 58.18

Rule 2 59.96 62.99 53.99

Rule 3 60.67 59.97 57.56

Rule 4 59.99 62.99 59.79

Table 6: Average Integrality Gap When the Same Number of Nodes

Are Solved
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Conclusions

• There exists significantly important branching information at

two-levels deep.

• The branching rules often reduce the size of the search tree in

comparison to “full” strong branching, and to branching rules

implemented in commercial solvers.

• Tighter representation of MIP and an even smaller branch and

bound tree are achieved by incorporating preprocessing and

probing techniques.

• Similar branching decision can still be made, but with less

computational effort, by limiting number of simplex iterations

or the number of fractional variables.

July 6, 2004 Lookahead Branching for MIP Slide 20



Future Research

• Can we develop other useful branching rules based on

measuring the degradation in LP relaxation value two-levels

deep? We are particularly interested in methods based on

multiobjective optimization, extending our branching rule 4.

• Can we derive implication inequalities for general integer

variables at two-levels deep?

• Can we speed up the two-levels deep branching algorithm even

more by imposing the limitation on both the number of

simplex iterations and the number of fractional variables?

• Can the ideas presented here be incorporated into practical

methods for integer programming to solve larger problems?
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