SYMPHONY 5.0
Callable Library for Mixed Integer Programming
and
Implementation

Ted Ralphs and Menal Guzelsoy
Industrial and Systems Engineering
Lehigh University

ISE Dept. Optimization Seminar Series, Jun 29, 2004

ipseminar '04

Outline of Talk

o
— Callable library API
— OSl interface
— User callbacks

o

— Warm-Starting
* Resolve
* Bicriteria solve

x 2-Stage SIP

ipseminar '04 2

Brief Introduction to SYMPHONY

— A callable library for solving mixed-integer linear programs with a wide
variety of customization options.
— Core solution methodology is a state of the art implementation of

— Qutfitted as a generic MILP solver.
— Extensive documentation available.
— Source can be downloaded from www.branchandcut.org

e SYMPHONY Solvers

ipseminar '04 3

What is COIN-OR?

Fully integrated with the Computational Infrastructure for Operations
Research (COIN-OR) libraries.

o
— An initiative promoting the development and use of interoperable,
open-source software for operations research.
— A consortium of researchers in both industry and academia dedicated
to improving the state of computational research in OR.
— A non-profit corporation known as the COIN-OR Foundation
[

— A library of interoperable software tools for building optimization
codes, as well as some stand-alone packages.

— A venue for peer review of OR software tools.

— A development platform for open source projects, including a CVS
repository.

— Soon to be hosted by INFORMS.

ipseminar '04

Supported Formats and Architectures

— MPS (COIN-OR parser)
— GMPL/AMPL (GLPK parser)
— User defined

— Text
— 1GD
— VbcTool

— Single-processor Linux, Unix, or Windows
— Distributed memory parallel (message-passing)
— Shared memory parallel (OpenMP)

ipseminar '04

SYMPHONY C Callable Library

e Primary subroutines

— sym_open_environment ()

— sym_parse_command_line ()
— sym_load_problem()

— sym_find_initial_bounds()
— sym_solve()

— sym_mc_solve()

— sym_resolve()

— sym_close_environment ()

e Auxiliary subroutines

— Accessing and modifying problem data
— Accessing and modifying parameters
— User callbacks

ipseminar '04 6

Implementing a MILP Solver with SYMPHONY

e Using the callable library, we only need a few lines to implement a solver.
e The file name and other parameters are specified on the command line.

e The code is the same for any configuration or architecture, sequential or
parallel.

e Command line would be

symphony -F model.mps

int main(int argc, char **argv)

{
sym_environment *p = sym_open_environment () ;
sym_parse_command_line(p, argc, argv);
sym_load_problem(p) ;
sym_solve(p) ;
sym_close_environment (p) ;

ipseminar '04 7

OSI interface

e The COIN-OR Open Solver Interface is a standard C++ class for
accessing solvers for mathematical programs.

e Each solver has its own derived class that translates OSI calls into those
of the solver’s library.

e For each method in OSI, SYMPHONY has a corresponding method.
e The OSI interface is implemented as wrapped C calls.

e The constructor calls sym_open_environment () and the destructor calls
sym_close_environment ().

e The OSl initialSolve() method calls sym_solve().

e The OSI resolve() method calls sym_resolve().

ipseminar '04 8

Using the SYMPHONY OSI interface

e Here is the implementation of a simple solver using the SYMPHONY
OSI interface.

int main(int argc, char **argv)

{
OsiSymSolverInterface si;
si.parseCommandLine(argc, argv);
si.loadProblem();
si.branchAndBound() ;

}

e Again, the code is the same for any configuration or architecture,
sequential or parallel.

ipseminar '04 9

Customizing

e The main avenues for advanced customization are the parameters and
the user callback subroutines.

e There are more than 50 callbacks and over 100 parameters.

e The user can override SYMPHONY’s default behavior in a variety of
ways.

ipseminar '04 10

Warm Starts for MILP

e To allow resolving from a warm start, we have defined a SYMPHONY
warm start class, which is derived from CoinWarmStart.

e The class stores a snapshot of the search tree, with node descriptions
including:

- , and
- (candidate, fathomed, etc.).

e The tree is stored in a compact form by storing the node descriptions as
differences from the parent.

e Other auxiliary information is also stored, such as the current incumbent.
e A warm start can be saved at any time and then reloaded later.

e [he warm starts can also be written to and read from disk.

ipseminar '04 11

Warm Starting Procedure

[
— If only parameters have been modified, then the candidate list is
recreated and the algorithm proceeds as if left off.
— This allows parameters to be tuned as the algorithm progresses if
desired.
[

— We limit modifications to those that do not invalidate the node warm
start information.

— Currently, we only allow modification of rim vectors.

— After modification, all leaf nodes must be added to the candidate list.

— After constructing the candidate list, we can continue the algorithm
as before.

ipseminar '04

12

Warm Starting Example (Parameter Modification)

e The following example shows a simple use of warm starting to create a
dynamic algorithm.

int main(int argc, char **argv)

{

OsiSymSolverInterface si;

si
S1

si

si

.parseCommandLine (argc, argv);
i .1loadProblem() ;

si.
.setSymParam(0OsiSymSearchStrategy, DEPTH_FIRST_SEARCH) ;
si.
si.
si.

setSymParam(OsiSymFindFirstFeasible, true);

initialSolve();
setSymParam(OsiSymFindFirstFeasible, false);
setSymParam(0OsiSymSearchStrategy, BEST_FIRST_SEARCH) ;

.resolve();

ipseminar '04 13

Warm Starting Example (Problem Modification)

e The following example shows how to warm start after problem
modification.

int main(int argc, char **argv)

{
OsiSymSolverInterface si;
CoinWarmStart ws;
si.parseCommandLine(argc, argv);
si.loadProblem() ;
si.setSymParam(0OsiSymNodeLimit, 100);
si.initialSolve();
ws = si.getWarmStart();
si.setSymParam(0OsiSymNodeLimit, 10000) ;
si.resolve();
si.set0bjCoeff (0, 1);
si.set0ObjCoeff (200, 150);
si.setWarmStart (ws);
si.resolve();

ipseminar '04 14

Bicriteria MILPs !

e We limit the discussion here to pure integer programs (ILPs), but
generalization to MILPs is straightforward.

e The general form of a bicriteria ILP is
vmax [cz, dzx],
S.t. Ax <b,
x € L".

e Solutions don't have single objective function values, but pairs of values
called outcomes.

o A feasible z is called efficient if there is no feasible z such that cx > ¢z
and dx > dz, with at least one inequality strict.

e The outcome corresponding to an efficient solution is called Pareto.

e The goal is to enumerate Pareto outcomes.

1T K.R., M.J. Saltzman, and M.M. Wiecek, An Improved Algorithm for Biobjective Integer Programming
and Its Application to Network Routing Problems, to appear in Annals of Operations Research

ipseminar '04 15

Supported Outcomes

e A bicriteria ILP can be converted to a single-criteria ILP by substituting
a weighted sum objective

max(Gc+ (1 — B)d)x

rzeX

for the bicriteria objective to obtain a parameterized family of ILPs.

e Optimal solutions to members of this family are extreme points of the
convex lower envelope of outcomes and are called supported.

e Supported outcomes are Pareto, but the converse is not true.

e It is straightforward to generate all supported outcomes by solving a
sequence of |LPs.

ipseminar '04

16

lllustration of Pareto and Supported Outcomes

ipseminar '04 17

Generating Pareto Outcomes

e To generate Pareto outcomes, we must replace the weighted sum
objective with a weighted Chebyshev norm (WCN) objective.

o Let z¢ be a solution to the original ILP with objective ¢ and z¢ be a
solution with objective d.

e Then the WCN objective is

ar%% max{B(cx — cz), (1 — B)(dz — dz?)}.

e This objective can be linearized to obtain another family of ILPs.

e Assuming uniform dominance, Bowman showed solutions are efficient if
and only if they optimal for some member of this family.

e The mild condition is uniform dominance, which states that all the points
in Pareto set are strongly Pareto: cx > cx and dx > dx!

ipseminar '04 18

The WCN algorithm

e The algorithm maintains a list of Pareto outcomes found so far, ordered
by corresponding 3 value.

e We choose a pair (p,q) from the list and determine whether there is a
Pareto outcome between them by solving a ILP with WCN objective and
weight

Bpq = (dz — dz?) /(cy — cy® + dx — dz?),

o If the result is a known outcome, then (3, is a breakpoint.

e Otherwise, the result is a new efficient solution r and we add (p,r) and
(r,q) to the list.

e This algorithm is asymptotically optimal.

ipseminar '04 19

Implementing the WCN algorithm

e Because the WCN algorithm involves solving a sequence of slightly
modified MILPs, warm starting can be used.

e Two approaches

— Warm start from the result of the previous iteration.
— Solve a “base” problem first and warm each subsequent problem from
there.

e |n addition, we can optionally save the global cut pool from iteration to
iteration, using SYMPHONY's persistent cut pools.

e |f the uniform dominance assumption is not satisfied, then we have to
filter out weakly dominated solutions.

e Both the callable library and the OSI interface allow the user to define a
second objective function and call the bicriteria solver.

ipseminar '04 20

Network Routing Problems

e Using SYMPHONY, we developed a custom solver for a class of network
design and routing problems.

e A single commodity is supplied to a set of customers from a single supply
point.

e We must design the network and route the demand, obeying capacity
and other side constraints.

e \We wish to consider both

— the (the sum of lengths of all links), and
— the (the sum of length multiplied by
demand carried for all links).

e These are competing objectives, so we can analyze the tradeoff by using
the SYMPHONY multicriteria solver.

ipseminar '04 21

2-Stage Stochastic Programming Solver Using Dual
Decomposition ?

e Consider the following two stage stochastic programming instance with
fixed, relatively complete, integer recourse:

z=min {cr+ Q(x): Ax <b, x € X} where
Q(z) = E¢p(h(§) —T()z) and
¢(s) = min{q({)y : Wy < s,y € Y}

with appropriate dimensions.
o |f we define:
ST i={(z,y)): Az < bz € X, T'2x + Wy’ <k, €Y}
then, the deterministic equivalent of the problem would be:

z=min{cx + ijqjyj (x,y?) e STy j=1,..,r
J

2C.C.Caroe, R.Schultz/Operations Research Letters 24 (1999) 37-45

ipseminar '04 22

e Furthermore, we can introduce the copies of first stage variables: zt, "

and rewrite the equation as:

Z = min {ij(cxj +@y) (2,) e ST} j=1,..,r
J

st 2t =2 =..2" (Non-anticipativity constraint)

e Assume that we represent the non-anticipativity constraint by the
equality:
Y Hizl =0
J

with appropriate dimensions.

ipseminar '04 23

e The Lagrangian relaxation with respect to the non-anticipativity condition
is the problem of finding 27, 47,7 = 1, ..., r such that:

D(u) = min {Z Li(2?,y7,u): (z7,y7) € S} where
J
Li(a?, 9’ u) =p'(ca’ + ¢’y) +uw(H2?) j=1,..7
e Now on, we have converted our initial problem to find:

Z1p = max, D(u)

e The main advantage of this formulation is that we can seperate the
problem into subproblems for each scenario:

D(u) = ZDj(u) where

D;(u) = min {L;(z?,y’,u) : (z7,9?) € §7}

ipseminar '04 24

Branch and Bound Algorithm

e Each of these r subproblems is an MILP problem.

e So, at step t of Subgradient Optimization, r subproblems defined as
D;(u') = min {L;(x?,y7,u?) : (27,97) € S7}j = 1,...,r need to be
solved.

e Solving Z1,p will give an upper bound which in general is larger than z.
That is because of the duality gap.

e A branch and bound algorithm is presented. Basically, we solve
Lagrangian dual relaxation of each node branched on some component
of x.

e Because the algorithm involves solving a sequence of modified MILP’s in
each node, SYMPHONY's warm starting can be used.

ipseminar '04

25

Example: Warm Starting

e Consider the simple warm-starting code from earlier in the talk.

e Applying this code to the MIPLIB 3 problem p0201, we obtain the results

below.

e Note that the warm start doesn’t reduce the number of nodes generated,

but does reduce the solve time dramatically.

28 100
3 118
24 122
6 198

ipseminar '04 26

Example: Bicriteria ILP

e Consider the following bicriteria ILP:
vmax [8x1, x2]
S.t. 7T+ 29 < 56
28x1 + 9z < 252
3x1+ Txeo <105

L1,T2 ZO

e For this ILP, we get the set of Pareto outcomes pictured on the next
slide.

ipseminar '04

27

Example: Pareto and Supported Outcomes for Example

Y2

Non-dominated Solutions

15.000 4————

14.000
13.000

—

@ Supported Solutions [

12.000
11.000

10.000

9.000

8.000
7.000

6.000
5.000

4.000
3.000

2.000

1.000

0.000

0.000 10.000 20.000

30.600
Y1

40.000

50.000

60.000 70.000

ipseminar '04 28

Example: Bicriteria Solver

e Consider the simple ILP from our earlier example.

e By examining the supported solutions and break points, we can easily
determine p(#), the objective function value as a function of 6.

6 range p(0)] T3
(—o0, 1.333) 64 8 0
(1.333,2.667) | 56 +60 | 7 6
(2.667,8.000) | 40+120 | 5 12
(8.000, 16.000) 32+130 | 4 13
(16.000, o0) 150 0 15

ipseminar '04

29

325.00
300.00
275.00
250.00
225.00
200.00
175.00
1530.00
125.00
100.00
75.00
50.00
25.00
0.00

Example: Graph of Price Function

Price Function

5 7.5
Range

ipseminar '04 30

Example: 2-Stage SIP problem

e The problem was obtained from Caroe:
3
max {5331 +4zo + Q(x1,22) : 0 < x1,29 <5 and integer}

where (Q(x1,x2) is the expected value of the multi-knapsack problem:

max {16y1 + 19y2 + 23y3 + 28ya}

s.t 201 + 3y2 +4ys +0ys <& — w1,
6y1 +y2 +3ys+2ys <& — 2, y; €{0,1}, i=1,...,4
and the random variable ¢ = (&1,&2) is uniformly distributed on

v = {(5,5),(5,6),...,(5,15),(6,5), ..., (15,15)}, giving a total of 121
scenarios.

ipseminar '04

31

e SUTIL (provided by Prof. Linderoth) was used to read SMPS files.

e The non-anticipativity constraints used are:

ija:j +(F-1DzF=0 k=1,.,r
7k

e Initial Lagrangian multipliers are picked to be 0.

298.92
160.87
160.48

ipseminar '04 32

Conclusion

e We presented a new version of the SYMPHONY solver with an OSI
interface supporting warm starting for MILPs.

e We have shown how this capability can be used to implement an efficient
bicriteria solver for ILPs.

e We have shown how this solver can in turn be used to perform sensitivity
analysis and analyze tradeoffs for competing objectives.

e In future work, we plan on refining SYMPHONY’'s warm start and
sensitivity analysis capabilities.

e Two papers covering the contents of this talk are available.

e Full computational results will be available in a future paper.

