
Primal heuristics in MIPs

Presented by:

Kumar Abhishek (Lehigh University)

Ashutosh Mahajan (Lehigh University)

1



Outline of Talk

• Introduction: MIP and Primal Heuristic

• Description of two primal heuristics

• Implementation

• Proposed Work

2



Primal Heuristics in MIP (1)

• A typical MIP solver uses Branch and Bound (and Cuts)

• A Linear Program is solved at each node

• There are 3 possibilities

1. Solution of LP is feasible to the original problem

2. Solution of the LP is non integral and hence infeasible for the

original problem

3. LP is infeasible

• If solution is non-integral, there are two possibilities

1. zLP ≥ best solution ⇒ Fathom

2. zLP ≤ best solution ⇒ sub-branching

Hence a good incumbent is important.

3



Primal Heuristics in MIP (2)

A good incumbent may be achieved by:

• Fixing variables and diving

• Searching around the current LP solution for an integral solution

• If an IP solution is found, searching for a better solution in the

neighbourhood.

None of the approaches guarantee a good solution.

None of them guarantee good speed

Good heuristics have been limited to specific problem structures

4



Our Objective

To implement generalized primal heuristics for an MIP solver

Proposed Heuristics

1. Local Branching (Fischetti and Lodi - 2002)

2. RINS (Danna, Rothberg and Pape - 2004)

MIP solvers

1. MINTO

2. SYMPHONY

5



LOCAL BRANCHING

• A form of soft-fixing: give solver some freedom to fix variables e.g.

∆(x, x̄) =
∑

j∈S̄

(1 − xj) +
∑

j∈B\S̄

xj ≤ k

where,

S̄ = {j ∈ B : x̄j = 1}

• Branching decision

∆(x, x̄1) ≤ k

∆(x, x̄1) ≥ k + 1

• Iterative procedure

• Additionally time-bounds and diversification could be used.

6



7



Relaxation Induced Neighborhood Search (RINS)

• Assumes that an incumbent exists.

• Intuitively, a good solution should be around the LP Optimal. Also,

it should have some closeness to the incumbent.

• Fix those variables which have the same value in the incumbent and

the LP optimal.

• Form a new MIP after fixing these variables.

• Solve this simpler MIP.

• Optionally, put a limit on the number of nodes to be searched in the

sub-MIP.

8



Guided Dives

• Extends the idea of RINS while deciding which branch to choose first.

• Chooses that branch which allows the branching variable to take the

value it has in the current incumbent.

• If this branch does not yield a solution then go to the other branch.

9



1 2
(x  = 2, x  = 3)

x  <= 12 

x  = 1.52 
INCUMBENT

current node

EXAMPLE OF GUIDED DIVE

(Choice of the guided dive)

x  >=  22

10



Implementation

• RINS Requires a call to the MIP solver to solve a smaller sized MIP.

• In MINTO, this can be achieved through recursion.

• A new problem will be formulated using the APPL functions.

• The original formulation will be kept. The branching constraints will

be dropped.

• Solve this simpler MIP.

• Return the result back to the parent.

• Based on the results obtained from the child, update the parent.

• In case of SYMPHONY, recursion is now possible.

11



Implementation-II

• Local Branching:

- No new MIP instance required.

- Add soft bound constraints at a new incumbent and resolve.

- May need to backtrack by removing the bound constraints.

- Other issues:

* Finding suitable parameters like maximum sub-problem size,

branching parameters, time-limits etc.

12


