
The SYMPHONY Callable Library for Mixed Integer Programming

Ted Ralphs∗ Menal Guzelsoy†

August 19, 2004

Abstract

SYMPHONY is a customizable, open-source library for solving mixed-integer linear pro-
grams (MILP) by branch, cut, and price. With its large assortment of parameter settings, user
callback functions, and compile-time options, SYMPHONY can be configured as a generic MILP
solver or an engine for solving difficult MILPs by means of a fully customized algorithm. SYM-
PHONY can run on a variety of architectures, including single-processor, distributed-memory
parallel, and shared-memory parallel architectures under MS Windows, Linux, and other Unix
operating systems. The latest version is implemented as a callable library that can be accessed
either through calls to the native C application program interface, or through a C++ interface
class derived from the COIN-OR Open Solver Interface. Among its new features are the ability
to solve bicriteria MILPs, the ability to stop and warm start MILP computations after modi-
fying parameters or problem data, the ability to create persistent cut pools, and the ability to
perform rudimentary sensitivity analysis on MILPs.

1 Introduction

As recently as a decade ago, the software available for solving generic mixed-integer linear programs
(MILPs) was relatively limited. In the last 10 years, this has changed dramatically. There are now
more than a dozen solvers available, many of which are open source. Among the academic and
research codes available for solving generic MILPs are MINTO [24], MIPO [2], bc-opt [7], SBB [13],
GLPK [23] bonsaiG [15], PARINO [20] and FATCOP [5]. Commercial offerings include ILOG’s
CPLEX, IBM’s OSL (soon to be discontinued), and Dash’s XPRESS. In addition, there are a
number of frameworks available, including BCP [19], ABACUS [18], ALPS [28], and PICO [8].

The Computational Infrastructure for Operations Research (COIN-OR) Foundation is a recently
formed non-profit foundation that evolved from an initiative launched by IBM in 2001 [22]. The
primary goal of COIN-OR is to promote the development of open source software for operations
research. The COIN-OR software repository currently hosts a dozen open source projects, all
available for free download. SYMPHONY is an open-source callable library for solving MILPs
that originated as a framework authored by Ralphs and Ladányi for solving difficult combinatorial
problems. The original has since spawned two derivative frameworks, SYMPHONY and BCP [19].
BCP is a C++ framework that is more general than SYMPHONY, but has a steeper learning curve
and cannot be used “out of the box.” SYMPHONY has recently been integrated with the COIN-
OR libraries and outfitted as a generic MILP solver. The source code is available for download
from www.BranchAndCut.org/SYMPHONY.

∗Dept. of Industrial and Systems Engineering, Lehigh University, Bethlehem PA, tkr2@lehigh.edu
†Dept. of Industrial and Systems Engineering, Lehigh University, Bethlehem PA, megb@lehigh.edu

1

The core solution methodology of SYMPHONY is a branch, cut, and price algorithm that in-
corporates most of the solution management features available in other codes. Features not yet
included, but under development, include an integer presolver, a primal heuristic, and better sup-
port for column generation. The absence of the first two features hurt SYMPHONY’s performance
as a generic MILP solver, but it is otherwise full-featured and well-suited for implementing the cus-
tomized algorithms required for solving very difficult classes of problems. It also performs well in
parallel [27]. SYMPHONY depends on several other open source libraries for specific functionality,
including the Cut Generation Library, the Open Solver Interface, and the MPS file parser main-
tained by COIN-OR, GLPK’s GMPL file parser, and a third-party solver for linear-programming
problems (LPs), such as the one maintained by COIN-OR (CLP).

2 The Application Program Interface

SYMPHONY 5.0 is the first version of SYMPHONY to be implemented as a callable library with a
new interface derived from the COIN-OR Open Solver Interface (OSI). This change markedly im-
proves SYMPHONY’s usability and flexibility. SYMPHONY and solvers built using SYMPHONY
have been the subject of a number of papers, most recently [27], [25], and [29]. SYMPHONY’s
legacy features are well-detailed in the SYMPHONY User’s Manual [26], so we focus here on new
features, such as the application program interface (API), the bicriteria solver, the ability to warm
start MILP computations, and the ability to perform rudimentary sensitivity analysis. To our
knowledge, these features are not yet available in other MILP codes and should be of interest to
potential users. Below, we briefly describe the new C API, the C++ interface, and the use of the
user callback functions. We assume the reader is familiar with the fundamentals of mixed-integer
linear programming.

2.1 The Callable Library

SYMPHONY’s callable library consists of a complete set of subroutines for loading and modifying
problem data, setting parameters, and invoking solution algorithms. The user invokes these sub-
routines through the API specified in the header file symphony api.h. Some of the basic commands
are described below. For the sake of brevity, the arguments have been left out.

sym open environment(): Opens a new environment, and returns a pointer to it. This pointer
then has to be passed as an argument to all other API subroutines (in the C++ interface,
this pointer is maintained for the user).

sym parse command line(): Invokes the built-in command-line parser for setting commonly used
parameters.

sym load problem(): Reads the problem data and sets up the root subproblem (see Section 2.3).

sym solve(): Solves the currently loaded problem from scratch. This method is described in more
detail in Section 3.1.

sym warm solve(): Solves the currently loaded problem from a warm start. This method is de-
scribed in more detail in Section 3.2.

sym mc solve(): Solves the currently loaded problem as a multicriteria problem. This method is
described in more detail in Section 3.3.

2

int main(int argc, char **argv)
{

sym_environment *env = sym_open_environment();
sym_parse_command_line(env, argc, argv);
sym_load_problem(env);
sym_solve(env);
sym_close_environment(env);

}

Figure 1: A generic MILP solver with implemented with SYMPHONY in C.

sym close environment(): Frees all problem data and deletes the environment.

By default, SYMPHONY reads an MPS or GMPL file specified by the user, although this behavior
can be overridden by implementing a user callback that reads the data from a file in a customized
format (see Section 2.3). SYMPHONY can also be used easily with FLOPC++ [17], an open-source
modeling system that accesses solvers through the OSI. As an example of the use of the library
functions, Figure 1 shows the code for implementing a generic MILP solver with default parameter
settings. Note that the user does not have to invoke a command to read the MPS file. During
the call to sym parse command line(), SYMPHONY determines that the user wants to read in
an MPS file. During the subsequent call to sym load problem(), the file is read and the problem
data stored. To read an MPS file called sample.mps and solve it using this program, the following
command would be issued:

symphony -F sample.mps

The code of Figure 1 is identical for both sequential and parallel computations. The choice between
sequential and parallel execution modes is made at compile-time. In addition to the parts of the API
just described, there are a number of standard subroutines for accessing and modifying problem
data and parameters. These can be used between calls to the solver to change the behavior of the
algorithm or to modify the instance being solved.

2.2 The OSI Interface

The OSI is a C++ interface class maintained by COIN-OR that provides a standard API for access-
ing a variety of solvers for mathematical programs. A code implemented using calls to the methods
in the OSI base class can be linked with any solver for which there is an OSI implementation.
This allows development of solver-independent codes and eliminates many portability issues. The
current incarnation of OSI supports only solvers for linear and mixed-integer linear programs. A
new version supporting a wider variety of solvers is currently under development.

We have implemented an OSI interface for SYMPHONY 5.0 that allows any solver built with
SYMPHONY to be accessed through the OSI. For each method in the OSI base class, there is a
corresponding method in the C API. The OSI methods are implemented simply as wrapped calls to
the C library. When an OSI object is constructed, sym open environment() is called and a pointer
to the environment is stored. When the OSI object is destroyed, sym close environment() is called
and the environment is deleted. To fully support SYMPHONY’s capabilities, we have extended
the OSI interface to include some methods not in the base class, such as a parseCommandLine()

3

int main(int argc, char **argv)
{

OsiSymSolverInterface si;
si.parseCommandLine(argc, argv);
si.loadProblem();
si.initialSolve();

}

Figure 2: A generic MILP solver implemented with SYMPHONY using OSI.

method. Figure 2 shows the program of Figure 1 implemented using the OSI interface. The code
would be exactly the same for accessing any customized SYMPHONY solver, sequential or parallel.

The current version of the OSI is geared primarily toward support of LP solvers. One reason
for this is that LP solvers based on the simplex algorithm support much richer functionality than
do typical MILP solvers. In SYMPHONY 5.0, we have begun to extend some of this functionality
to the realm of MILP solvers. For example, our OSI implementation supports warm starting and
some basic sensitivity analysis. The implementation of this functionality is rudimentary at the
moment, but will be improved in future versions.

2.3 User Callback Functions

The user’s main avenues for customization are the tuning of parameters and the implementation
of one or more of over 50 callback functions. The callback functions allow the user to override
SYMPHONY’s default behavior for many of the functions performed as part of its algorithm,
including branching, cutting-plane generation, management of the cut pool, management of the
LP relaxation, search and diving strategies, program output, etc. Callbacks in SYMPHONY are
implemented slightly differently than in other popular libraries. Each callback function is called
from a SYMPHONY wrapper function that interprets the user’s return value and determines what
action should be taken. If the user performs the required function, the wrapper function exits
without further action. If the user requests that SYMPHONY perform a certain default action,
then this is done. All callback functions have names that begin with the prefix “user.” Files
containing default function stubs for the callbacks are provided along with the SYMPHONY source
code. These can then be modified by the user as desired. Makefiles and Microsoft Visual C++
project files are provided for automatic compilation. Below is a sampling of commonly used callback
functions.

user initialize root node(): The user can specify a core relaxation consisting of cuts and vari-
ables that are to be present in every subproblem. These cuts and variables are never con-
sidered for removal and need not be included in the description of each search-tree node, so
specifying a core can potentially save memory and increase efficiency.

user display solution(): The user can specify a custom output format for feasible solutions.
This is useful for combinatorial problems where a simple list of variables and values is not
interpretable by a human.

user create subproblem(): Rather than specifying the model directly using an MPS or GMPL
file, the user can write a function that creates the initial LP relaxations at each node “on the
fly.”

4

user find cuts(): The user can generate custom classes of cutting planes by separating the cur-
rent relaxed solution.

user is feasible(): The user can determine whether a given solution is feasible or not. This is
needed in cases where integrality does not necessarily imply feasibility.

user select candidates(): The user can select candidates for strong branching.

user compare candidates(): After presolving, the user can choose a candidate to be used for
branching.

user generate column(): The user can generate columns using this function.

user logical fixing(): The user can tighten bounds or fix variables based on implicit problem
structure.

A full list of callbacks is contained in the SYMPHONY User’s Manual [26].

3 Solution Procedures

Because SYMPHONY is designed to allow parallel execution, both the internal library and the
set of user callback functions are divided along functional lines into five separate modules. This
modularization facilitates the parallel implementation and eases code maintenance. The five mod-
ules are the master, tree manager, cut generator, cut pool, and node processor modules. Only the
master module is persistent and the environment pointer described earlier is a pointer to the master
module. Other modules encapsulate the specific functionality needed to execute the algorithms and
exist only while a solve call is active. Each module can function as an independent remote process
for parallel execution. A more complete description of the modular design of SYMPHONY can be
found in [27].

For LPs, the OSI has two function calls for solving the loaded model, initialSolve() and
resolve(). The first call is used when solving a problem from scratch and the second is used when
re-solving after having modified the problem in some way. SYMPHONY’s OSI implementation ex-
tends this idea to MILPs. We have also implemented a third solve call for solving bicriteria MILPs.
In the next few sections, we describe some of the details of how these methods are implemented.

3.1 Initial Solve

Calling initialSolve() solves a given MILP from scratch, as described above. The first action
taken is to create an instance of the tree manager module that will control execution of the al-
gorithm. If the algorithm is to be executed in parallel on a distributed architecture, the master
module spawns a separate tree manager process that will autonomously control the solution pro-
cess. The tree manager, in turn, creates the modules for processing the nodes of the search tree,
generating cuts, and maintaining cut pools. These modules work in concert to execute the solution
process, communicating either through shared memory or through a message-passing protocol, such
as PVM [14].

The overall flow of the algorithm is similar to other branch-and-bound implementations and
is described in detail in [27]. A priority queue of candidate subproblems available for processing
is maintained at all times and the candidates are processed in an order determined by the search
strategy. The algorithm terminates when the queue is empty or when another specified condition

5

is satisfied. A new feature in SYMPHONY 5.0 is the ability to stop the computation based on
exceeding a given time limit, exceeding a given limit on the number of processed nodes, achieving
a target percentage gap between the upper and lower bounds, or finding the first feasible solution.
After halting prematurely, the computation can be restarted after modifying parameters or problem
data. This enables the implementation of a wide range of dynamic solution algorithms, as we
describe next.

3.2 Solve from Warm Start

Among the utility classes maintained by COIN-OR is a base class for describing the data needed to
warm start the solution process for a particular algorithm. To support this option in SYMPHONY,
we have implemented such a warm start class for MILPs. The main content of the class is a
compact description of the search tree at the time the computation was halted. This description
contains complete information about the subproblem corresponding to each node in the search
tree, including the branching that created the node, the list of active variables and constraints,
and warm-start information for the subproblem itself (which is a linear program). All information
is stored compactly using SYMPHONY’s native data structures, which store only the differences
between a child and its parent. In addition to the tree itself, other relevant information regarding
the status of the computation is recorded, such as the current bounds and best feasible solution
found so far. Using the warm start class, the user can save a warm start to disk, read one from disk,
or restart the computation at any point after modifying parameters or the problem data itself. This
allows the user to easily build in fault tolerance by periodically backing up warm-start information
to disk, to design dynamic algorithms in which the parameters are modified after the gap reaches
a certain threshold, or to modify problem data during the solution process if needed.

The ability to re-solve after modifying problem data has a wide range of applications in practice.
One obvious application is to allow modification of problem data after the solution procedure
has already been initiated. Another obvious application arises when the solution of a family of
related MILPs is required, as occurs, for instance, in decomposition algorithms, in parametric and
stochastic programming algorithms, in multicriteria optimization algorithms, and in algorithms for
analyzing infeasible mathematical models.

3.2.1 Modifying Parameters

The most straightforward use of the warm start class is to restart the solver after modifying problem
parameters. The master module automatically records the warm-start information resulting from
the last solve call and restarts from that point if a call to resolve() is made, unless external
warm-start information is loaded manually. To start the computation from a given warm start
when the problem data has not been modified, the tree manager simply traverses the tree and
adds those nodes marked as candidates for processing to the node queue. Once the queue has been
reformed, the algorithm is then able to pick up exactly where it left off. Figure 3 shows the code
for implementing a solver that changes from depth first search to best first search after the first
feasible solution is found. The situation is more challenging if the user modifies problem data in
between calls to the solver. We address this situation next.

3.2.2 Modifying Problem Data

If the user modifies problem data in between calls to the solver, SYMPHONY must make cor-
responding modifications to the leaf nodes of the current search tree to allow execution of the

6

int main(int argc, char **argv)
{

OsiSymSolverInterface si;
si.parseCommandLine(argc, argv);
si.loadProblem();
si.setSymParam(OsiSymFindFirstFeasible, true);
si.setSymParam(OsiSymSearchStrategy, DEPTH_FIRST_SEARCH);
si.setSymParam(OsiSymKeepWarmStart, true);
si.initialSolve();
si.setSymParam(OsiSymFindFirstFeasible, false);
si.setSymParam(OsiSymSearchStrategy, BEST_FIRST_SEARCH);
si.resolve();

}

Figure 3: Implementation of a dynamic MILP solver with SYMPHONY.

algorithm to continue. Changes to the original data that do not invalidate the subproblem warm-
start data, i.e., the basis information for the LP relaxation, are the easiest to accommodate. Our
current procedures only handle modifications to the right-hand side and objective function vectors
of the original MILP. Note that modifications may invalidate valid inequalities that have been
previously generated. Currently, we discard such cuts. Methods for handling other modifications,
such as the addition and deletion of columns and rows or the modification of the constraint matrix
itself, will be added in the future. To initialize the algorithm, each leaf node, regardless of its status
after termination of the previous solve call, must be inserted into the queue of candidate nodes and
reprocessed with the modified input data. After this reprocessing, the computation can continue
as usual.

Code illustrating the use of the warm start facility is shown in Figure 4. In this example,
the solver is allowed to process 100 nodes and then save the warm-start information. Afterward,
the original problem is solved to optimality, then is modified and re-solved from the saved warm
start. As an illustration of the use of warm starting procedures in practice, Table 1 shows the
results of solving a set of 2-stage stochastic integer programming instances modified from [16, 12, 1]
with the dual decomposition algorithm of [4]. We used a straightforward implementation of the
subgradient algorithm to solve the Lagrangian duals and SYMPHONY to solve the subproblems,
with and without warm starting from one iteration to the next. SUTIL [21] was used to read in
the instances. The presence of a gap indicates that the problem was not solved to within the gap
tolerance in the time limit. Although the running times are not competitive overall because of the
slow convergence of our subgradient algorithm, one can clearly see the improvement arising from
the use of warm starting.

3.2.3 Persistent Cut Pools

To complement the ability to save the search tree, the user can also save and reuse the global cut
pool. When saving the search tree, only the cuts that are currently active in some leaf node and
are needed to restart the search process are saved. At times, however, it may be advantageous to
save the entire global cut pool, including cuts that were generated, but are not currently active. If
this is desirable, the user can direct SYMPHONY to maintain one or more persistent cut pools.

7

int main(int argc, char **argv)
{

OsiSymSolverInterface si;
CoinWarmStart* ws;
si.parseCommandLine(argc, argv);
si.loadProblem();
si.setSymParam(OsiSymNodeLimit, 100);
si.setSymParam(OsiSymKeepWarmStart, true);
si.initialSolve();
ws = si.getWarmStart();
si.setSymParam(OsiSymNodeLimit, -1);
si.resolve();
si.setObjCoeff(0, 100);
si.setObjCoeff(200, 150);
si.setWarmStart(ws);
si.resolve();

}

Figure 4: Use of SYMPHONY’s warm starting capability.

Such pools exist as part of the master module and are attached to the tree manager whenever a
solve call is made.

3.3 Bicriteria Solve

A bicriteria MILP is a generalization of a standard MILP in which one considers a second objective
function. One notion of solving a bicriteria MILP consists of generating all Pareto outcomes. An
outcome is the pair of objective function values corresponding to a given feasible solution. The
Pareto outcomes are those for which there is no other outcome for which both components are at
least as small, and at least one is strictly smaller. In some cases, we are only be interested in the
supported outcomes, which are those corresponding to solutions to a MILP with a single objective
function formed by a convex combination of the two original objectives. For those readers not
familiar with bicriteria integer programming, surveys of methodology are provided in [6] and more
recently in [9, 10] and [11].

In [29], we describe an asymptotically optimal algorithm for solving bicriteria MILPs. SYM-
PHONY 5.0 contains a generic implementation of this algorithm, along with a number of methods
for approximating the set of Pareto outcomes. To support these capabilities, we have extended the
OSI interface so that it allows the user to define a second objective function and have also added a
method for invoking the bicriteria solver called multiCriteriaBranchAndBound(). Implementing
this algorithm requires the underlying solver to have the ability to generate, among all optimal
solutions to a MILP with a primary objective, a solution minimizing a given secondary objective.
We added this capability to SYMPHONY through the use of optimality cuts, as described in [29].

The algorithm itself consists of the solution of a sequence of MILPs with identical feasible
region, but differing objective functions. Thus, it is possible in principle to use warm starting to
improve efficiency. Although the objective function is nonlinear in the case of generating Pareto
outcomes, it can be linearized through a standard reformulation. This reformulation does require

8

Problem Tree Size Tree Size % Gap % Gap CPU min CPU min
Without WS With WS Without WS With WS Without WS With WS

storm8 1 1 - - 14.75 8.71
storm27 5 5 - - 69.48 48.99
storm125 3 3 - - 322.58 176.88
LandS27 71 69 - - 6.50 4.99
LandS125 37 29 - - 15.72 12.72
LandS216 39 35 - - 30.59 24.80
dcap233 200 39 61 - - 256.19 120.86
dcap233 300 111 89 0.387 - 1672.48 498.14
dcap233 500 21 36 24.701 14.831 1003 1004
dcap243 200 37 53 0.622 0.485 1244.17 1202.75
dcap243 300 64 220 0.0691 0.0461 1140.12 1150.35
dcap243 500 29 113 0.357 0.186 1219.17 1200.57
sizes3 225 165 - - 789.71 219.92
sizes5 345 241 - - 964.60 691.98
sizes10 241 429 0.104 0.0436 1671.25 1666.75

Table 1: Results of using warm starting to solve stochastic integer programs.

modification of the constraint matrix from iteration to iteration, but it is easy to show that these
modifications do not invalidate the basis, allowing the warm start to be loaded very efficiently.

In [29], we report on our experience using the bicriteria solver to analyze the tradeoff between
fixed and variable costs for a class of network routing problems. Applying our rudimentary version
of warm starting to this problem over the same test set, we have achieved promising results,
improving solution times in almost all cases. A summary of results is shown in Figure 5, with the
dark bars representing running times with warm starting and the light bars representing running
times without warm starting over two data sets described in [29]. The effect is evident, although
it is also clear that further refinements to our procedures are still needed.

4 Sensitivity Analysis

Besides yielding the ability to closely examine the tradeoffs between competing objectives, the
bicriteria solver can be used to solve parametric MILPs, which are families of MILPs parameterized
by a single scalar. Typically, parametric MILPs are obtained by parameterizing either the objective
function or the right-hand side, replacing the usual single vector with a combination of two vectors.
The goal is to determine the complete set of optimal values that occur as the parameter is varied
over a given interval. This set characterizes how the optimal value varies as a function of change in
either the objective function or the right-hand side in one dimension and is an elementary form of
global sensitivity analysis (see [3] for a discussion of this in the case of linear-programming models).

9

Figure 5: Results of using warm starting to solve multicriteria optimization problems.

int main(int argc, char **argv)
{

OsiSymSolverInterface si;
si.parseCommandLine(argc, argv);
si.loadProblem();
si.setObj2Coeff(0, 1);
si.setSymParam(OsiSymMCFindSupportedSolutions, true);
si.multiCriteriaBranchAndBound();

}

Figure 6: Performing sensitivity analysis with SYMPHONY’s bicriteria solver.

As an example, consider the following simple parametric MILP.

max 8x1 + θx2,

s.t. 7x1 + x2 ≤ 56,

28x1 + 9x2 ≤ 252,

3x1 + 7x2 ≤ 105, and

x1, x2 ≥ 0, integral.

(1)

Taking the first objective function to be (8, 1) and the second objective function (0, 1), we can
determine how the optimal value of the MILP varies as a function p(θ) of the second objective
coefficient simply by invoking the bicriteria solution algorithm to enumerate all supported solutions.
Figure 6 shows the code for performing this analysis. Applying the bicriteria solver of Figure 6
results in the function p(θ) shown in Table 2.

In addition to the sensitivity analysis that can be undertaken by using SYMPHONY’s bicri-
teria solver, we have also implemented the method suggested in [30] for performing approximate
sensitivity analysis on the right-hand side vector and some related procedures. The method in [30]
is based on constructing an approximate dual price function from the dual solutions obtained while

10

θ range p(θ) x∗1 x∗2
(−∞, 1.333) 64 8 0
(1.333, 2.667) 56 + 6θ 7 6
(2.667, 8.000) 40 + 12θ 5 12
(8.000, 16.000) 32 + 13θ 4 13
(16.000,∞) 15θ 0 15

Table 2: Price function for example MILP (1).

int main(int argc, char **argv)
{

OsiSymSolverInterface si;
si.parseCommandLine(argc, argv);
si.loadProblem();
si.setSymParam(OsiSymSensitivityAnalysis, true);
si.initialSolve();
int ind[2];
double val[2];
ind[0] = 4; val[0] = 7000;
ind[1] = 7; val[1] = 6000;
lb = si.getLbForNewRhs(2, ind, val);

}

Figure 7: Performing sensitivity analysis with SYMPHONY

solving the LP relaxations in each search-tree node. The price function does not have a simple
closed form, and must be computed for each change in the right-hand side. This price function can
be used to obtain approximate sensitivity information quickly when there is not enough time for a
complete re-solve. Figure 7 shows a program that uses this sensitivity analysis function. This code
will produce a lower bound for a modified problem with new right-hand side values of 7000 and
6000 in the 4th and 7th rows. Similar functions are provided for obtaining quick upper and lower
bounds after changing either the right-hand side or objective function vectors.

5 Conclusions

We have described the main features of the SYMPHONY 5.0 callable library. SYMPHONY includes
implementations of a number of techniques useful for performing sensitivity analysis, re-solving
MILPs from a warm start, and analyzing bicriteria MILPs. To our knowledge, these techniques
are not available in other solvers. The computational results presented here are very preliminary,
but show promise. These capabilities are still being refined and new techniques developed, and we
hope to improve them in future versions of the library. This is an area of active research that we
believe has a great deal of potential and has received relatively little attention in the literature.
However, it remains to be seen how well these methods will work in practice. In future work, we
plan to extend and generalize the methods presented here to allow greater flexibility on the type of
problem modifications and sensitivity analyses that can be performed and to further improve the
power of the bicriteria solver.

11

Acknowledgments This research was partially supported through NSF grant ACI-0102687 and
the IBM Faculty Partnership Program.

References

[1] S. Ahmed. SIPLIB, 2004. Available from http://www.isye.gatech.edu/ sahmed/siplib.

[2] E. Balas, S. Ceria, and G. Cornuéjols. Mixed 0-1 programming by lift-and-project in a branch-
and-cut framework. Management Science, 42:1229–1246, 1996.

[3] D. Bertsimas and J.N. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific,
Belmont, MA, USA, 1997.

[4] C.C. Caroe and R. Schultz. Dual decomposition in stochastic integer programming. Operations
Research Letters, 24:37–45, 1999.

[5] Q. Chen and M. C. Ferris. FATCOP: A fault tolerant Condor-PVM mixed integer program
solver. SIAM Journal on Optimization, 11:1019–1036, 2001.

[6] J. Climaco, C. Ferreira, and M. E. Captivo. Multicriteria integer programming: an overview of
different algorithmic approaches. In J. Climaco, editor, Multicriteria Analysis, pages 248–258.
Springer, Berlin, 1997.

[7] C. Cordier, H. Marchand, R. Laundy, and L.A. Wolsey. bc-opt: A branch-and-cut code for
mixed integer programs. Mathematical Programming, 86:335, 1997.

[8] J. Eckstein, C.A. Phillips, and W.E. Hart. PICO: An object-oriented framework for parallel
branch and bound. Technical Report RRR 40-2000, Rutgers University, 2000.

[9] M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of multiobjective com-
binatorial optimization. OR Spektrum, 22:425–460, 2000.

[10] M. Ehrgott and X. Gandibleux. Multiobjective combinatorial optimization—theory, method-
ology and applications. In M. Ehrgott and X. Gandibleux, editors, Multiple Criteria
Optimization—State of the Art Annotated Bibliographic Surveys, pages 369–444. Kluwer Aca-
demic Publishers, Boston, MA, 2002.

[11] M. Ehrgott and M. M. Wiecek. Multiobjective programming. In M. Ehrgott, J. Figueira, and
S. Greco, editors, State of the Art of Multiple Criteria Decision Analysis, Boston, MA, 2004.
Kluwer Academic Publishers.

[12] A. Felt. Stochastic linear programming data sets, 2004. Available from
http://www.uwsp.edu/math/afelt/slptestset.html.

[13] J. Forrest. Simple branch and bound, 2004. Available from http://www.coin-or.org.

[14] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM: Parallel
Virtual Machine. The MIT Press, Cambridge, MA, 1994.

[15] L. Hafer. bonsaiG: Algorithms and design. Technical Report SFU-CMPTTR 1999-06, Simon
Frazer University Department of Computer Science, 1999.

12

[16] D. Holmes. Stochastic linear programming data sets, 2004. Available from
http ://users.iems.nwu.edu/ jrbirge/html/dholmes/post.html.

[17] T.H. Hultberg. FlopC++, 2004. Available from http://www.mat.ua.pt/thh/flopc/.

[18] M. Jünger and S. Thienel. The ABACUS system for branch and cut and price algorithms
in integer programming and combinatorial optimization. Software Practice and Experience,
30:1325–1352, 2001.

[19] L. Ladányi and T.K. Ralphs. COIN/BCP User’s Manual, 2001. Available from
http://www.coin-or.org.

[20] J. Linderoth. Topics in Parallel Integer Optimization. PhD thesis, School of Industrial and
Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 1998.

[21] J.T. Linderoth. SUTIL, 2004.

[22] R. Lougee-Heimer. The common optimization interface for operations research. IBM Journal
of Research and Development, 47:57–66, 2003.

[23] A. Makhorin. Introduction to GLPK, 2004. Available from
http://www.gnu.org/software/glpk/glpk.html.

[24] G. L. Nemhauser, M.W.P. Savelsbergh, and G.S. Sigismondi. MINTO, a Mixed INTeger
Optimizer. Operations Research Letters, 15:47–58, 1994.

[25] T.K. Ralphs. Parallel branch and cut for capacitated vehicle routing. Parallel Computing,
29:607–629, 2003.

[26] T.K. Ralphs. SYMPHONY Version 4.0 User’s Manual. Technical Report 03T-006, Lehigh
University Industrial and Systems Engineering, 2003.

[27] T.K. Ralphs, L. Ladányi, and M.J. Saltzman. Parallel branch, cut, and price for large-scale
discrete optimization. Mathematical Programming, 98:253–280, 2003.

[28] T.K. Ralphs, L. Ladányi, and M.J. Saltzman. A library hierarchy for implementing scalable
parallel search algorithms. Journal of Supercomputing, 28:215–234, 2004.

[29] T.K. Ralphs, M.J. Saltzman, and M.M. Wiecek. An improved algorithm for biobjective in-
teger programming and its application to network routing problems. To appear in Annals of
Operations Research, 2004.

[30] Linus Schrage and Laurence A. Wolsey. Sensitivity analysis for branch and bound linear
programming. Operations Research, 33:1008–1023, 1985.

13

