
Parallel Branch and Cut

T.K. Ralphs∗

Revised January 17, 2006

Abstract

We discuss the main issues that arise in parallelizing the well-known branch-and-
cut algorithm for solving mixed-integer linear programs. Designing an efficient paral-
lelization scheme requires careful analysis of various tradeoffs involving the degree of
synchronization, the degree of centralized storage of information, and the degree to
which information discovered during the algorithm is shared between processors. We
first present a methodological framework within which these tradeoffs can be analyzed
and then show how the framework applies to the design of two software packages that
take opposing approaches to achieving scalablility. Finally, we present computational
results obtained solving three different problem classes in parallel with increasing num-
bers of processors. The results illustrate the degree to which various sources of parallel
overhead affect scalability and demonstrate that properties of the problem class itself
can dictate the effectiveness of a particular methodology.

1 Introduction

In this paper, we discuss parallelization of the branch-and-cut algorithm for solving general
mixed-integer linear programs (MILPs). Branch and cut is a specialization of the more
general class of algorithms known as branch and bound and is currently the most effective
and commonly used approach for solving difficult MILPs. Virtually all modern software
packages for solving MILPs use a variant of the branch-and-cut approach. Despite vast
improvements in implementation over the past two decades and recent quantum leaps in
computing power, however, many MILPs arising in practice remain difficult to solve by
branch and cut. The difficulty stems mainly from limitations in memory and processing
power, so a natural approach to overcoming this difficulty is to consider the use of parallel
computing platforms, which can deliver a pooled supply of computing power and memory
that is virtually limitless.

Branch and cut is a divide-and-conquer algorithm that partitions the original solution
space into a number of smaller subsets and then solves the resulting smaller MILPs in a
recursive fashion. Such an approach appears easy to parallelize, but this appearance is
deceiving. Although it is easy in principle to divide the original solution space into subsets,
it is difficult to do this in such a way that the amount of effort required to solve each of

∗Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015,
tkralphs@lehigh.edu, http://www.lehigh.edu/~tkr2

the resulting smaller MILPs is approximately equal. If the work is not divided equally,
then some processors will become idle long before the solution process has been completed,
resulting in inefficiency. Even if this challenge is overcome, it might still be the case that
the total amount of work required to solve the subproblems far exceeds the amount of work
required to solve the original problem on a single processor.

The challenge to be faced in parallelizing any algorithm is to use additional resources,
i.e., processors, as efficiently as possible. This consists not only of maximizing the number
of processors that have work to do at any given time, but also ensuring that the work they
are doing is “useful.” In other words, the total amount of work performed in a parallel
algorithm for solving a given problem should be as close as possible to the total amount of
work performed using the best sequential algorithm. These two goals together mean that
if we have p processors available and the time required to solve a given instance on one
processor is S, we would ideally like to be able to solve the instance on p processors in time
S/p. This is the yardstick against which parallel performance is generally measured.

The purpose of this paper is not to present a single approach to parallelization of branch
and cut, but to introduce the reader to a range of issues that arise in such parallelization.
Defining a single “best” approach is not possible in general—an approach suited for one
class of problems may fail miserably on another, as we demonstrate in Section 5. Achieving
good parallel performance requires, first and foremost, efficient mechanisms for sharing
information among the available processors. In fact, the way in which processors share
information is the primary determinant of parallel efficiency. Because sharing information
is usually costly, there is a fundamental tradeoff between the cost of this sharing and the
loss of efficiency that can result from not sharing. It is this tradeoff that we examine in the
remainder of the paper.

The paper is organized as follows. In Section 2, we review necessary background, includ-
ing the branch-and-cut algorithm and basic concepts in parallel computing. In Section 3,
we discuss in broad terms the issues involved in parallelizing branch and cut, including the
types of information that must be shared and what specific tradeoffs must be considered
in designing an efficient algorithm. In Section 4, we describe the implementational details
of two software packages that can be used for solving MILPs in parallel, SYMPHONY and
ALPS. The two packages take very different approaches to parallelization and we use them
to illustrate the tradeoffs discussed in Section 3. In Section 5, we analyze computational
results obtained using SYMPHONY to solve instances from a number of representative
problem classes. Finally, in Section 6, we conclude and summarize the material presented
in the rest of the paper.

2 Background

2.1 Mixed-Integer Linear Programming

2.1.1 Definitions

A mixed-integer linear program is the problem of optimizing a linear objective function over
a polyhedral feasible region with the additional constraint that some of the variables are

2

required to take on integer values. More formally, a MILP is a problem of the form

zIP = min
x∈P∩(Zp×Rn−p)

c>x, (1)

where P = {x ∈ Rn | Ax = b, x ≥ 0} is a polyhedron defined by constraint matrix A ∈ Qm×n

and right-hand side vector b ∈ Qm, and c ∈ Rn is the objective function vector. For the
remainder of the paper, we will use this standard notation to refer to the data associated
with a given MILP. Note that we have assumed without loss of generality that the variables
indexed 1 through p are the integer variables, that is, those required to take on values in
Z. The variables indexed p + 1 through n are then the continuous variables. The case in
which all variables are continuous (p = 0) is called a linear program (LP). Associated with
each MILP is an LP, called the LP relaxation, with feasible region P, obtained by relaxing
the integrality restrictions. By convention, we set zIP =∞ if P ∩ (Zp × Rn−p) = ∅.

2.1.2 Branch and Bound

Overview. Branch and bound is the basic algorithmic approach taken by virtually all
modern MILP solvers. The algorithm uses a divide and conquer strategy to partition the
feasible set F = P ∩ (Zp×Rn−p) into subsets and then optimizes over each resulting subset
in a recursive fashion. The goal is to determine a least cost member of F (or prove F = ∅),
so we first attempt to find a “good” solution x̄ ∈ F (called the incumbent) by a heuristic
procedure or otherwise. If we succeed, then z̄ = c>x̄ serves as an initial upper bound on
zIP . If no such solution is found, then we set z̄ =∞.

The processing or bounding operation is to solve a relaxation of the original problem,
yielding a lower bound on the value of an optimal solution.1 If solving the relaxation
yields a member of F , then such member is also optimal for the MILP itself and we are
done. Otherwise, we identify k disjoint polyhedral subsets of P, P1, . . . ,Pk, such that
∪k

i=1Pi ∩ (Zp × Rn−p) = F . This is called the branching or partitioning operation. Each of
these subsets defines a new MILP with the same objective function as the original, called a
subproblem. Based on this partitioning of F , we have

min
x∈F

c>x = min
i∈1..k

(
min

x∈Pi∩(Zp×Rn−p)
c>x

)
, (2)

so we have reduced solution of the original MILP to solution of a family of smaller MILPs.
The subproblems associated with P1, . . . ,Pk are called the children of the original MILP,
which is itself called the root subproblem, as well as the parent of each of its children.

After partitioning the root subproblem, we initialize C, the set of candidate subproblems
(those that await processing or partitioning) with the children of the root subproblem
and associate with each of these an initial lower bound computed during the partitioning
procedure. The next step is to select a candidate subproblem i (with feasible region Pi ∩
(Zp ×Rn−p)), remove it from C, and process it. Processing results in a new lower bound zi

and (possibly) a relaxed solution x̂i ∈ Rn. There are three possible outcomes:

1. If zi ≥ z̄, then the subproblem cannot have a solution with value strictly better than x̄
and we may discard, or fathom, it. This includes the case where Pi∩ (Zp×Rn−p) = ∅.

1We assume the relaxation is bounded, or else the original MILP is itself unbounded.

3

2. If x̂i ∈ F and zi = c>x̂i < z̄, then x̂i becomes the new incumbent. We set z̄ ← c>x̂i,
x̄← x̂i, and again fathom the subproblem.

3. If none of the above three conditions hold, then the subproblem becomes a candidate
for the partitioning operation.

If a subproblem becomes a candidate for partitioning, it can either be partitioned immedi-
ately, or placed back in the candidate list. Once partitioned, the children of a subproblem
are added to the candidate list and the subproblem itself is discarded. The overall algo-
rithm consists of continuing to select subproblems from the candidate list in a prescribed
order (called the search order) and processing or partitioning them, as appropriate, until
C is empty, at which point the current incumbent must be the optimal solution. If no
incumbent exists at termination, then F = ∅.

It is common to associate the set of subproblems with a tree, called the search tree, in
which each node corresponds to a subproblem and is connected to both its children and its
parent. We therefore use the term search tree node, or simply node, interchangeably with
the term subproblem and refer to the original MILP as the root node or root of this tree.

Implementation. From the above description, it can be seen that any branch-and-bound
algorithm consists of four essential elements:

• Upper bounding method : A method for determining an initial incumbent and corre-
sponding upper bound z̄ (optional).

• Lower bounding method : A method for processing a subproblem.

• Branching method : A method for partitioning a subproblem.

• Search strategy : A method for determining the search order.

By implementing these elements in various ways, one can derive a wide range of specialized
versions of branch and bound.

The branch and bound procedure can be seen as an iterative method for improving the
difference between the current upper bound (the objective function value of the current
incumbent) and the current lower bound (the minimum of the lower bounds associated
with the candidate subproblems). The difference between these two bounds is called the
optimality gap. Typically, the goal of both the bounding and the branching operations is to
improve the lower bound, while the search strategy can be focused on improving either the
upper or the lower bound. Bounding and branching methods are generally developed with
a particular application or problem class in mind, but search strategies can be discussed in
a more generic fashion. The possible strategies are numerous, but we summarize the most
common approaches below.

Many search strategies employ a fixed rule for selecting the next subproblem to process.
A common such method is best-first search, which chooses a candidate node with smallest
lower bound. Because of the fathoming rule employed in branch and bound, a best-first
search strategy ensures that no subproblem with a lower bound above the optimal solution

4

value can ever be chosen for processing. Therefore, the best-first strategy tends to minimize
the number of subproblems processed and to improve the lower bound quickly. However,
this comes at the price of sacrificing incremental improvements to the upper bound, since the
upper bound will generally become finite only when an optimal solution has been located.
The lack of a good upper bound can also hurt overall efficiency by reducing the effectiveness
of procedures both for fathoming and for tightening of variable bounds based on the size of
the optimality gap.

At the other extreme, depth-first search chooses the next candidate to be a node at
maximum depth in the tree, i.e., a node whose path to the root node in the search tree is
longest. Depth-first is one of a class of strategies, called diving strategies, that may retain one
or more children of the current subproblem for processing even when there exist candidates
nodes with smaller lower bounds. In contrast to best-first search, which will produce few
suboptimal solutions, diving strategies may produce many suboptimal solutions, typically
early in the search process. This allows the upper bound to be improved quickly in the early
phases of the algorithm, which can be advantageous if early termination is necessitated.
Diving strategies also have the advantage that the change in the relaxation being solved
from subproblem to subproblem may be very slight, so the relaxations may be solved more
quickly than in best-first search.

Neither best-first search nor depth-first search attempt to select nodes that have a high
probability of leading to improved feasible solutions. Estimate-based methods are improve-
ments in this regard. The best-projection method [22, 46] measures the overall “quality”
of a node by combining its initial lower bound with the degree of infeasibility of a relaxed
solution obtained either while processing the parent or during branching. Alternatively,
the best-estimate [6] method combines a node’s lower bound, degree of infeasibility, and an
estimate of the value of an optimal solution to the subproblem.

Since we have two goals in node selection—finding improved feasible solutions (i.e.,
improving the upper bound) and proving that the current incumbent is itself a “good”
solution (i.e., improving the lower bound)—it is natural to develop node selection strategies
that switch from one goal to the other during the course of the algorithm. This results in a
two-phase search strategy. In the first phase, we try to determine “good” feasible solutions,
while in the second phase, we try to prove this goodness. Perhaps the simplest two-phase
algorithm is to perform depth-first search until a feasible solution is found, then switch to
best-first search.

Hybrid methods also combine two or more node selection methods, but in a different
manner than in two-phase methods. In a typical hybrid method, the search tree is explored
using a diving strategy until the lower bound of the child subproblem being explored rises
above a prescribed level in comparison to the overall lower or upper bound. At this point, a
new subproblem is selected by a different criterion (e.g., best-first or best-estimate), and the
diving process is repeated. For an in-depth discussion of search strategies for mixed-integer
linear programming, see the paper of Linderoth and Savelsbergh [42].

2.1.3 Branch and Cut

When the relaxation used in the processing step is an LP relaxation, we obtain a general class
of algorithms known as LP-based branch and bound. For many problem classes, the bound

5

yielded by the initial LP relaxation is not strong enough to allow efficient solution of difficult
instances, but we can improve the bound by dynamically generating valid inequalities that
can than be added to the LP relaxation to strengthen it. Padberg and Rinaldi called this
technique branch and cut [51].

More formally, an inequality is a pair (a, a0) consisting of a coefficient vector a ∈ Rn

and a right-hand side a0 ∈ R. Any member of the half-space {x ∈ Rn | a>x ≤ a0} is said
to satisfy the inequality and all other points are said to violate it. An inequality is valid
for a given MILP if all members of the feasible set F satisfy it. A valid inequality (a, a0) is
called improving for the MILP if

min
x∈Rn
{c>x | x ∈ P, ax ≤ a0} > min

x∈Rn
{c>x | x ∈ P}.

A necessary and sufficient condition for an inequality to be improving is that it be violated
by all optimal solutions to the LP relaxation, so violation of the fractional solution x̂ ∈ Rn

generated by solving the LP relaxation is a necessary condition. Even if a given valid
inequality violated by x̂, also called a cut, is not improving, adding it to the current LP
relaxation may still result in the generation of a new fractional solution and, in turn,
additional candidate inequalities.

An important observation is that an inequality (a, a0) is valid for F if and only if
it is valid for the associated polyhedron conv(F). Valid inequalities that are necessary
to the description of conv(F) are called facet-defining inequalities (see [49] for a precise
definition). Because they provide the closest possible approximation of conv(F), facet-
defining inequalities are typically very effective at improving the lower bound. They are,
however, difficult to generate in general. For an arbitrary vector x̂ ∈ Rn and polyhedron
R ⊆ Rn, the problem of either generating a facet-defining inequality (a, a0) violated by x̂
or proving that x̂ ∈ R is called the facet identification problem. The facet identification
problem for a given polyhedron is polynomially equivalent to optimization over the same
polyhedron [28], so generating a facet-defining inequality violated by an arbitrary vector is
in general as hard as solving the MILP itself. The problem of generating a valid inequality
violated by a given fractional solution, whether facet-defining or not, is called the separation
problem.

A high-level description of the iterative bounding procedure used in branch and cut
is shown in Figure 1. Generally, the loop consists of an alternation between solution of
the current LP relaxation and the generation of valid inequalities violated by the relaxed
solution. Because the number of violated valid inequalities generated in each iteration can
be quite large, they are first added to a local queue. Following the generation step, a limited
number of violated inequalities are taken from the queue and added to the LP relaxation.
It is important to note that not only are valid inequalities added to the relaxation each
iteration, but both valid inequalities and variables are considered for deletion as well. For
valid inequalities, this deletion is based on the values of each constraint’s corresponding
slack and dual variables. For variables, removal occurs when both the lower and upper
bound for a variable are fixed to the same value through a procedure that compares each
variable’s reduced cost to the current optimality gap (for a description of this procedure,
called reduced cost fixing, see [50]).

Efficient management of the LP relaxation is critical to the efficiency of branch and cut,
since both the memory required to store the search tree and the time required to process

6

a node are dependent on the number of constraints and variables that are “active” in each
subproblem. In practice, there are a number of extra steps that can be taken, such as logical
preprocessing and execution of primal heuristics, to accelerate the overall performance of
the algorithm, but these are ancillary to the topic of this paper. More details regarding the
management of the LP relaxation in a typical MILP solver are provided in [57].

If the procedure in Figure 1 fails to fathom the subproblem, then we are forced to
branch. In branch and cut, the branching method should generally have three properties.
First, the feasible region of the parent problem should be partitioned in such a way that
the resulting subproblems are also MILPs. This means that the subproblems are usually
defined by imposing additional linear inequalities. Second, the union of the feasible regions
of the subproblems should contain at least one optimal solution to the parent problem.
Finally, since the primary goal of branching is to improve the overall lower bound, the
current fractional solution should not be contained in any of the members of the partition.
Otherwise, the overall lower bound will not be improved.

Given a fractional solution x̂ ∈ Rn to the LP relaxation, an obvious way to fulfil the
above requirements is to choose an index j ≤ p such that x̂j 6∈ Z (a fractional variable) and
create two subproblems, one by imposing an upper bound of bx̂jc on variable j and a second
by imposing a lower bound of dx̂je. This is a valid partitioning, since any feasible solution
must satisfy one of these two linear inequalities. Furthermore, x̂ is not feasible for either of
the resulting subproblems. This partitioning procedure is known as branching on a variable.
More generally, one can branch on other disjunctions. For any vector a ∈ Zn whose last
n − p entries are zero, we must have a>x ∈ Z for all x ∈ F . Thus, if ax̂ 6∈ Z, a can be
used to produce a disjunction by imposing the inequality a>x ≤ ba>x̂c in one subproblem
and the inequality a>x ≥ da>x̂e in the other subproblem. This is known as branching on a
hyperplane. Typically, branching on hyperplanes is a problem-specific method that exploits
special structure, but it can be made generic by keeping a pool of inequalities that are slack
in the current relaxation as branching candidates [36].

When branching on variables, there are usually many fractional variables, so we must
have a method for deciding which one to choose. A primary goal of branching is to improve
the lower bound of the resulting relaxations. The most straightforward branching methods
choose a branching variable based solely on the set of fractional variables and do not use any
auxiliary information. Branching on the variable with the fractional part closest to 0.5, the
first variable (by index) that is fractional, or the last variable (by index) that is fractional
are examples of such procedures. These rules tend to be too myopic to be effective, so
many solvers use more sophisticated approaches. Such approaches fall into two general cat-
egories: forward-looking methods and backward-looking methods. Methods in each category
attempt to choose the best partitioning by predicting, for a given candidate partitioning,
how much the lower bound will actually be improved. Forward-looking methods gener-
ate this prediction based solely on locally generated information obtained by “pre-solving”
candidate subproblems. The most common forward-looking branching method is strong
branching, in which the solver explicitly performs a limited number of dual simplex pivots
on the LP relaxations in each of the children resulting from branching on a given variable
in order to estimate the change in bound that would occur from that choice of branching.
Backward-looking methods take into account the results of previous partitionings to predict
the effect of future ones. The most popular such methods depend on the computation of
pseudo-costs [6, 23], which are calculated based on a history of the effect of branching on

7

Input: A subproblem defined by Pi ∈ C, an initial set of additional valid
inequalities defining an auxiliary polyhedron R (possibly generated during
processing of the parent subproblem), and the global upper bound z̄.

Output: Either (1) a lower bound zi on the optimal value of the subproblem,
or (2) an indication that the subproblem can be fathomed.

1. Form the initial LP relaxation

min
x∈Pi∩R

c>x, (3)

R is the polyhedron representing additional valid inequalities.

2. Solve the current LP relaxation

zi = min
x∈Pi∩R

c>x (4)

and let x̂ be the resulting fractional solution.

3. If zi ≥ z̄, then subproblem i can be fathomed. STOP.

4. If x̂ ∈ Pi ∩ (Zp × Rn−p), then subproblem i can be fathomed. If zi < z̄,
then set x̄→ x̂ and z̄ → zi. STOP.

5. Generate a set valid inequalities violated by x̂ and add them to the local
queue L.

6. Remove variables that can be fixed from the relaxation.

7. Remove ineffective valid inequalities from the description of R.

8. If L = ∅, then subproblem i is a candidate for partitioning. STOP and
output the lower bound zi.

9. Otherwise, add valid inequalities from L to the description of R and go to
Step 2.

Figure 1: The node processing loop in the branch-and-cut algorithm

8

each variable. Of course, as one might expect, there are also hybrids that combine these
two basic approaches [1].

2.2 Parallel Computing Concepts

2.2.1 Architecture

The architecture of the parallel platform (defined as a specific combination of software
and hardware) on which an algorithm will be deployed can be a significant factor in its
design. In particular, the topology of the communications network determines which pairs
of processors can communicate directly with each other [13]. Although many specialized
network topologies have been developed and studied, recent trends have favored the use of
commodity hardware to construct so-called Beowulf clusters [10]. In this paper, a simplified
parallel architecture similar to that of a typical Beowulf cluster is assumed. The main
properties of such an architecture are listed below.

• The cluster is comprised of homogeneous processing nodes, each with a single central
processing unit (or processor).

• The processing nodes are connected by a dedicated high-speed communication network
that allows every processing node to communicate directly with every other processing
node.

• There is no shared access memory (memory that can be accessed directly by multiple
processors). Only local memory is available to each processor. No assumption is made
regarding the local memory hierarchy.

• Communication between processing nodes is via a message-passing protocol. This
means that information can only be passed from one processing node to another as a
string of bits with an associated message tag indicating the structure of the informa-
tion contained in the message. The two most common message-passing protocols are
PVM [24] and MPI [27].

This cluster architecture and the algorithms we discuss are asynchronous by nature, mean-
ing that the processors do not have a common clock by which to synchronize their cal-
culations. Synchronization can only be accomplished through explicit communication. In
our simplified model, the two main resources required for computation are memory and
processing power, each of which can only be increased by adding processing nodes to the
cluster. A processing node consists of both a processor and associated memory, but we will
assume that each processing node has sufficient memory for required calculations and will
refer to processing nodes simply as “processors.”

2.2.2 Scalability

As mentioned earlier, the primary goal of parallel computing is to take advantage of in-
creased processing power to solve problems faster. The scalability of a parallel platform
is the degree to which it is capable of efficiently utilizing increased computing resources

9

(usually processors). We focus here on the effect of the algorithm design and therefore
compare the speed with which we can solve a particular problem instance using a given
parallel algorithm to that with which we could solve it on a single processor. The sequential
running time (S) is used as the basis for comparison and is usually taken to be the wall clock
running time of the best available sequential algorithm. The parallel running time (Tp) is
the wall clock running time of the parallel algorithm running on p processors. The speedup
(Sp) is simply the ratio S/Tp. Finally, the efficiency (Ep) is the ratio Sp/p of speedup to
number of processors. Note that all these quantities depend on p.

A parallel algorithm is considered scalable if it results in an efficiency close to one as
the number of processors is increased. When a parallel algorithm maintains an efficiency
greater than or equal to one, we say that it has achieved linear speedup. In theory, a parallel
algorithm cannot have an efficiency strictly greater than one (this is called superlinear
speedup), but in practice, such a situation can sometimes occur (see [15] and [37] for a
treatment of this phenomenon). When an algorithm has an efficiency less than one, the
parallel overhead is Op = Tp(1−Ep).

Conceptually, execution of a parallel algorithm can be divided into three phases. The
ramp-up phase is the period during which work is initially partitioned and allocated to the
available processors. This phase is loosely defined to last until all processors have been
assigned at least one task (the exact definition can vary, depending on the application).
The division of work that occurs during the ramp-up phase may be accomplished on a
single processor or may itself be parallelized to the extent possible. The second phase is the
primary phase, during which the algorithm operates in steady state. This is followed by the
ramp-down phase, during which termination procedures are executed and final results are
tabulated and reported. The ramp-down phase is loosely defined to start when the number
of available tasks first falls below the number of available processors.

The division of the algorithm into phases is to highlight the fact that certain portions
of every algorithm (e.g., the ramp-up and ramp-down phases) are inherently sequential.
Amdahl was the first to point this out and called this part of the running time the se-
quential fraction [2]. The inherently sequential portions of the algorithm can be significant
contributors to parallel overhead. Determining the initial pool of tasks and allocating them
to processors is an inherently sequential task, at least in part, and the efficiency with which
this can be done is usually an important factor in determining the amount of parallel over-
head. Because of this, if the problem size is kept constant, efficiency generally drops as
the number of processors increases. If the number of processors is kept constant, however,
then efficiency generally increases as problem size increases [34, 26, 29]. This led Kumar
and Rao to suggest a measure of scalability called the iso-efficiency function [35], which
measures the rate at which the problem size has to be increased with respect to the number
of processors in order to maintain a fixed efficiency.

2.2.3 Knowledge Management

As we mentioned in the introduction, achieving good parallel performance involves the
design of a scheme for sharing information between processors as the algorithm progresses.
Consider the following four main components of parallel overhead:

10

• Communication overhead : Time spent sending and receiving information, including
time spent inserting information into the send buffer and reading it from the receive
buffer at the other end.

• Idle time (ramp-up/ramp-down): Time spent waiting for initial tasks to be allocated
or waiting for termination at the end of the algorithm.

• Idle time (synchronization/handshaking): Time spent waiting for information re-
quested from another processor or waiting for another processor to complete a task.

• Performance of redundant work : Time spent performing work (other than communi-
cation tasks) that would not have been performed in the sequential algorithm.

The first three sources of overhead are costs incurred in order to share information among
the processors, whereas the last one is essentially the cost incurred by not sharing enough
information. This highlights a fundamental tradeoff—to achieve high efficiency, we must
limit the impact of the first three sources of overhead without increasing the impact of the
fourth source.

We refer to information generated during the execution of the algorithm as knowledge.
Trienekens and de Bruin introduced the notion that the efficiency of a parallel algorithm is
inherently dependent on the strategy by which this knowledge is stored and shared among
the processors [66]. From this viewpoint, a parallel algorithm can be thought of roughly as
a mechanism for coordinating a set of autonomous agents that are either knowledge genera-
tors (KGs) (responsible for producing new knowledge), knowledge pools (KPs) (responsible
for storing previously generated knowledge), or both. Specifying such a coordination mech-
anism consists of specifying what knowledge is to be generated, how it is to be generated,
and what is to be done with it after it is generated (stored, shared, discarded, or used for
subsequent local computations).

In order to effectively manage and organize the potentially huge amount of information
to be generated, knowledge is typically categorized by type, with each KP containing only
knowledge of a particular type. In addition, KPs may be either local (only accessible
locally) or global (available to share with other processors). Within each pool, knowledge is
organized to make retrieval and management as easy as possible. Whenever the amount of
knowledge generated could exceed the amount of storage capacity, each knowledge object
can be assigned a numerical priority that reflects its perceived importance to the overall
computation. This allows the KPs to be purged periodically to remove low priority items.

2.2.4 Task Management

Just as KPs can be divided by the type of knowledge they store, KGs may be divided either
by the type of knowledge they generate or the method by which they generate it. In other
words, processors may be assigned to perform only a particular task or set of tasks. If a
single processor is assigned to perform multiple tasks simultaneously, a prioritization and
time-sharing mechanism must be implemented to manage the computational efforts of the
processor.

The granularity of an algorithm is the size of the smallest task that can be assigned
to a processor. Choosing the proper granularity can be important to efficiency. Too fine a

11

granularity can lead to excessive communication overhead, while too coarse a granularity
can lead to excessive idle time and the performance of redundant work. We have assumed
an asynchronous architecture, in which each processor is responsible for autonomously or-
chestrating local algorithm execution by prioritizing local computational tasks, managing
locally generated knowledge, and communicating with other processors. Because each pro-
cessor is autonomous, care must be taken to design the entire system so that deadlocks, in
which a set of processors are all mutually waiting on one another for information, do not
occur.

2.3 Previous Work

The branch and bound algorithm described in Section 2.1.2 was first suggested by Land
and Doig in 1960 [38]. In 1970, Mitten abstracted branch and bound into the theoretical
framework we are familiar with today [47]. However, it was another two decades before
sophisticated software packages for solving MILPs began to be developed. Most of the soft-
ware packages currently available implement some version of the branch-and-cut algorithm
we have described. Available noncommercial generic MILP solvers include bonsaiG [30],
CBC [20], GLPK [44], lp solve [7], MINTO [48], and SYMPHONY [52, 59]. Commercial
MIP solvers include ILOG’s CPLEX and Dash’s XPRESS. Generic frameworks that allow
the user to take advantage of special structure by implementing specialized functionality,
such as problem-specific cut generation, include SYMPHONY, COIN/BCP [60], ABACUS
[32], and CBC. CONCORDE [4, 3], a package for solving the traveling salesman problem,
also deserves mention as the most sophisticated special-purpose code developed to date.

Numerous software packages implementing parallel branch and bound and parallel branch
and cut have also been developed. The previously mentioned SYMPHONY, COIN/BCP,
and CONCORDE all have parallel execution modes and can be run on networks of work-
stations. Other related software includes frameworks for implementing parallel branch and
bound such as PUBB [64], BoB [5], PPBB-Lib [68], and PICO [16]. PARINO [40] and
FATCOP [11] are parallel generic MILP solvers.

3 Parallelizing Branch and Cut

3.1 Knowledge Management

In branch and cut, an optimal solution to a given problem instance can be thought of as
a type of knowledge, which is typically the sole end product of the algorithm. Producing
such a solution, however, requires production of a great deal of auxiliary knowledge during
the course of the algorithm. This knowledge is typically discarded at termination, but may
be retained in some cases for the purpose of providing a proof of optimality or performing
sensitivity analysis. Below, we discuss the various types of knowledge that can be produced
during branch and cut and the issues involved in sharing and storing each type.

Bounds. The bounds that must be shared in branch and cut consist of the single global
upper bound and the lower bounds associated with the subproblems that are candidates for

12

processing. Knowledge of these bounds is important mainly for the avoidance of redundant
work. In branch and cut, the primary source of redundant work is the processing of nodes
whose initial lower bound exceeds the optimal solution value. In theory, the processing of
such nodes is avoidable with the proper search strategy, but in practice, such redundant
work may occur even in the sequential case if a search strategy other than pure best-first is
employed.

Although the final output of the algorithm is a single optimal solution, suboptimal
solutions may be produced during the course of the algorithm. The primary importance
of such solutions is that they may be the new incumbent at the time of their production
and hence may provide a new global upper bound. It is important that new global upper
bounds be broadcast as quickly as possible to other processors, as this knowledge allows
nodes whose lower bounds exceed this new upper bound to be fathomed, thus avoiding
the performance of redundant work. Dissemination of upper bounds generally incurs low
overhead and does not pose a serious scalability issue.

Knowledge of lower bounds is also important in avoiding the performance of redundant
work. The distribution of lower bounds among the candidate subproblems is used to deter-
mine if work should continue on nodes that are locally available or if new nodes should be
requested from a remote pool. This is part of the overall process of redistributing candidate
nodes during the algorithm, called load balancing (see Section 3.3.2). Making knowledge
of lower bounds available may be difficult to accomplish because the number of candidate
nodes available globally can be extremely large and they may not be stored centrally.

Node Descriptions. Two computational tasks that arise naturally in branch and cut
are the processing of a subproblem in the search tree (bounding) and the partitioning of
a subproblem into a number of new subproblems (branching). These two tasks are gener-
ally, though not always, the smallest units of work assigned to a processor. For efficiency,
the branching operation is frequently accomplished immediately following the processing
operation.

In order to process a node, it is necessary to have a detailed description of it. The
description of a search tree node consists primarily of descriptions of the valid inequalities
and variables that are active in the node and a complete description of the current basis
(assuming a simplex-based LP solver) or other information either inherited from the parent
or computed during branching to allow a warm start to the bound computation (for the def-
inition of a basis and its role in the solution of linear programs, see [69] or [50]). Along with
the set of active constraints and variables, we must also store the branching hyperplane(s)
that led to generation of the node. Processing a node results in the generation of new
knowledge in the form of bounds (described above) and (possibly) valid inequalities. Valid
inequalities discovered during the processing of a node may also be shared, as described in
the next section. If a node fails to be fathomed, then it becomes a candidate for branching.

The branching operation results in the generation of new node descriptions, which may
be stored locally (in a node pool) or shared with other processors. An important question
that arises is how to ensure that each processor assigned the task of processing search tree
nodes has a constant supply of high-priority nodes in its local pool, where the priority of
a node is determined by the search strategy being employed. We further discuss this and
other topics related to load balancing in Section 3.3.2 below.

13

Cuts. One of the advantages of branch and cut over generic LP-based branch and bound
is that the inequalities generated at each node of the search tree may be valid and useful in
the processing of search tree nodes in other parts of the tree. Valid inequalities are usually
categorized as either globally valid (valid for the convex hull of solutions to the original
MILP and hence for all other subproblems as well), or locally valid (valid only for the
convex hull of solutions to a given subproblem). Because some classes of valid inequalities
are difficult to generate, inequalities that prove effective in the current subproblem may be
shared through the use of cut pools that contain lists of such inequalities for use during the
processing of subsequent subproblems. The cut pools can thus be utilized as an auxiliary
method of generating violated valid inequalities during the processing operation.

Because the number of cuts generated during execution of the branch-and-cut algorithm
can be very large, careful management of these cuts is crucial. This includes not only
periodic purging of duplicate, dominated, and “ineffective” cuts from the pool(s), but also
the use of efficient data structures, called representations, for storing the cuts in a form that
is independent of any LP relaxation or specific search tree node. A cut’s representation is
a compact description that contains information about how to add it to a particular LP
relaxation and allows for the efficient calculation of the degree of violation with respect to
a given fractional solution. Adding a cut to a given LP relaxation consists of constructing
the row to be added to the constraint matrix and determining the corresponding right-hand
side value, taking into account the current set of active variables. The representation is
used not only to store each cut, but also to pass it from one processor to another when
necessary. Prudent maintenance of the cut pools can provide a global picture of which cuts
are the “most important,” leading to significant improvements in the effectiveness of the
algorithm.

In some implementations of branch and cut, it may be necessary or desirable to identify
cuts or variables by assigning them unique global indices. The set of variables is static,
so a priori assignment of global indices to each variable is easy. The set of potential valid
inequalities, on the other hand, is not generally known or may be too large to index. In
such a case, global indices can be issued from a central bank to avoid conflict, or can be
generated by hashing the representation. The first approach is simpler, but creates another
potential bottleneck operations. This bottleneck may be reduced by issuing large blocks of
indices to individual processors for future allocation to generated cuts.

Branching Information. If a backward-looking branching method, such as one based
on pseudo-costs, is used, then the sharing of historical information regarding the effect of
branching can be important to the implementation of the branching scheme. The informa-
tion that needs to be shared and how it is shared depends on the specific scheme used. For
an in-depth treatment of the issues surrounding pseudo-cost sharing in parallel, see [40] and
[16].

3.2 Task Management

In branch and cut, there are a number of distinct tasks to be performed and these tasks
can be assigned to processors in a number of ways. The main tasks to be performed are:

14

• Node processing : From the description of a candidate node, the processing procedure
produces either an improved bound or a feasible solution to the original MILP.

• Node partitioning : From the description of a processed node, the partitioning pro-
cedure is used to select a method of branching and subsequently produce a set of
children to be added to the candidate list.

• Cut generation: From a solution to a given LP relaxation produced during node
processing, the cut generation procedure produces a violated valid inequality (either
locally or globally valid).

• Pool maintenance: Some processors may be assigned the task of managing either node
or cut pools.

• Load balancing : One or more processors may be assigned the task of collecting in-
formation about the distribution of candidate subproblems globally and coordinating
their redistribution when necessary (see Section 3.3.2).

The way in which these tasks are grouped and assigned to processors partly determines
the parallelization scheme of the algorithm and its scalability. In Section 4, we discuss the
scheme for assigning tasks to processors and coordinating them in two different software
packages and analyze the effectiveness of each. Next, we discuss the main scalability issues
surrounding the parallelization scheme.

3.3 Scalability Issues

3.3.1 Ramp-up Phase

In branch and cut, the ramp-up phase is usually defined to last roughly until there are
enough candidate nodes available to occupy all available processors. The problem of re-
ducing idle time during the ramp-up phase has long been recognized as a challenging
one [25, 9, 16]. For instances in which the processing time of a single node is large rel-
ative to the overall solution time, idle time during the ramp-up phase can be one of the
biggest contributors to parallel overhead. This is due to the amount of time required to
generate a pool of candidate nodes sufficient to occupy all processors. There are two ob-
vious strategies available for reducing idle time during this initial phase—accelerating the
production of the initial pool of candidate nodes and occupying processors with auxiliary
tasks that may help accelerate execution during the primary phase.

To occupy otherwise idle processors, two auxiliary tasks that can be undertaken during
the ramp-up phase are calculation of an initial upper bound and various types of prob-
lem preprocessing. Determination of the initial upper bound involves execution of one or
more heuristic solution generation procedures, which can themselves be parallelized. Pre-
processing tasks can include the execution of traditional integer preprocessing algorithms,
the processing of the root node, the computation of initial pseudo-costs, and the tightening
of bounds on variable values by comparison of reduced cost to the optimality gap. These
tasks may also be parallelized.

Although processors can be effectively occupied with auxiliary tasks such as those de-
scribed above, the contribution of these auxiliary tasks to reductions in running time may

15

not be large enough to justify their execution if the assigned processors could be occu-
pied with the processing of candidate nodes. It is therefore still advantageous to keep the
ramp-up phase as short as possible. Unfortunately, effective techniques for accelerating the
generation of the initial pool of candidate nodes have proven elusive. Following processing
of the root node, it is clear that generation of the remaining pool can be parallelized to a
limited extent by distributing nodes as they are produced rather than waiting until a full
complement is available. This will obviously help, but has limited effect if the processing
of the first few nodes in the tree is time-consuming with respect to the overall solution
time. Another obvious approach is to reduce the processing time of each node in the ramp-
up phase, either by limiting cut generation or by branching more quickly than one would
otherwise.

Forrest et al. noted that effective branching is most important in the early phases of
the algorithm when it has the biggest impact on the eventual size of the search tree [21].
In a sequential algorithm, additional time spent making branching decisions, e.g., exploring
additional strong branching candidates, does result in an overall reduction in tree size, which
can translate into a reduction in solution time (up to a point). From this perspective, one
would be tempted to devote more time to branching during the ramp-up phase, not less.
This creates another challenging tradeoff between limiting ramp-up time and making good
branching decision early. This tradeoff is an important one, but one that has also proved
difficult to analyze. Informal experiments aimed at limiting ramp-up time by forcing early
termination of the node processing loop shown in Figure 1 and thus allowing the branching
step to be invoked more quickly failed to produce positive results. Likewise, efforts at
limiting the time devoted to performing the branching operation (e.g., considering fewer
strong branching candidates, for instance) have also failed. A promising approach that has
not yet been tested is to devote more effort to branching near the top of the tree, but to
parallelize the branching procedure itself. With a strong branching approach, this could
easily be done by distributing the candidates for pre-solving to multiple processors. It
might also be possible to employ a branching rule that generates more than the usual two
children. Such a rule would presumably produce candidate nodes more quickly, but might
also increase the size of the search tree. To our knowledge, little or no investigation of such
branching rules has been undertaken.

3.3.2 Primary Phase

During the primary phase, the main issue that arises is how to most effectively generate and
share the two main types of knowledge that arise in branch and cut—node descriptions and
valid inequalities. Node generation and sharing involves effective strategies for searching,
load balancing, and branching, while cut generation and sharing involves effective strategies
for managing the extremely large number of valid inequalities that may be generated during
the course of the algorithm. In each case, there is a difficult balance to be struck between
the efficiencies gained by centralization of knowledge, which leads to a much clearer global
picture, and decentralization of knowledge, which allows the tasks associated with knowledge
management to be distributed among a larger number of processors.

Search Strategy. The choice of search strategy has a number of important implications
in a parallel implementation that go beyond those already discussed in Section 2.1.2. Be-

16

cause their implementation often involves the existence of multiple node pools from which
candidates can be drawn, parallel algorithms require us to view search strategies in an
entirely new light. The lack of global information about available candidate subproblems,
for instance, renders the implementation of a pure best-first search strategy in parallel im-
practical and inefficient. Not only would it be difficult and time-consuming to identify the
candidate subproblem with the smallest lower bound globally at a given point in time, but
the cost associated with moving such subproblems from their current locations to available
processors would be prohibitive.

In general, executing a given search strategy in parallel exactly as it would be executed
sequentially is difficult because of the additional movement of nodes between processors
that may be required. Because of this movement of nodes, parallel search strategies are in-
extricably linked with methods for load balancing, discussed below. As in sequential branch
and bound, there is a tradeoff between strategies that attempt to minimize the overall size
of the search tree and strategies that emphasize the generation of feasible solutions. With
the additional expense that may be incurred retrieving nodes from remote pools, however,
parallel search strategies require consideration of a third dimension to this tradeoff—that
between choosing nodes available locally for processing and choosing those that must be
retrieved from a remote pool. Parallel search strategies may give a higher priority to nodes
available locally when deciding what node to process next.

The specification of a search strategy in parallel thus has two distinct elements—a local
strategy and a global strategy. The local strategy specifies what nodes are preferred among
those available locally, whereas the global strategy, tied closely to the load balancing scheme,
specifies how nodes should be shifted between processors in order to pursue a given global
strategy. We next present an overview of load balancing strategies. In Section 4, we describe
the implementation of two very different search and load balancing strategies used in two
software packages for solving MILPs in parallel.

Load Balancing. The tradeoff between centralization and decentralization of knowledge
is most evident in the mechanism for sharing node descriptions among the processors. This
is perhaps the most challenging aspect of implementing parallel branch and cut during
the primary phase and has been studied by a number of authors [19, 31, 33, 39, 63, 65].
Effective load balancing methods reduce both idle time associated with task starvation and
the performance of redundant work. In branch and cut, the goal is to ensure that “high-
priority” nodes, i.e., those favored by the search procedure (typically nodes with small lower
bounds), are available locally on all processors that require them. This means moving node
descriptions from processors with an excess of high-priority nodes to those with a deficit
of such nodes. Without such movement of nodes during the algorithm, the node pools of
some processors would degrade in quality or become empty, while the node pools of other
processors would contain too many high-priority nodes to be processed locally.

Before nodes can be shared, the first challenge is to recognize that an imbalance exists.
If the size of a local pool becomes too small, this is easy to identify, but determining if the
quality of the pool is too low may be more difficult, since this requires knowledge of the
quality of the node pools residing at other processors. Once a deficit has been identified, it
must be repaired through an exchange process that moves nodes from pools with excesses
to pools with deficits.

17

Any scheme for accomplishing the load balancing described above involves some degree
of centralization of knowledge in the form of either bounds or node descriptions themselves.
Such centralization can either be undertaken through the maintenance of permanent central-
ized knowledge pools or through a periodic knowledge gathering and redistribution process.
In Section 4, we discuss two software packages, one of which takes the first approach and
one of which takes the second.

Cut Sharing. Cut sharing, while not as challenging or as critical as the sharing of node
descriptions, can be important for applications where effective classes of structured valid
inequalities are known, but are difficult to generate. The well-known Traveling Salesman
Problem (TSP) and the related Vehicle Routing Problem, discussed in Section 5, are good
examples of such problems. A number of interesting and difficult questions arise in designing
strategies for cut management. The first of these is how many cut pools to maintain and
whether to restrict the contents of these pools by type, by validity (i.e., by subtree in which
the cuts are valid), or by some other criterion. Other questions to be answered include:

• Which locally generated cuts should be shared globally?

• When should a remote request for cuts be made and to which pool or pools should it
be sent (if there is more than one)?

• Which cuts should be returned in response to such a request?

• Which cuts should be retained retain and which discarded when memory becomes a
limitation?

Unfortunately, the answers to most of these questions depend strongly on the application.
We will discuss one implementation of cut sharing in Section 4.1. For an in-depth discussion
of a wide range of options for sharing cuts, see [40].

3.3.3 Ramp-down Phase

In the ramp-down phase, we may again face the problem of not having enough nodes globally
to occupy all available processors, as in the ramp-up phase. This problem is not as well
recognized or studied in the literature as the problem of reducing ramp-up time, but it
can also pose a serious scalability issue in some cases, as we demonstrate in Section 5.
The methods available for addressing the problem are similar to those employed during the
ramp-up phase, but further study of this phase of the computation is merited.

3.3.4 Properties of Instances

In addition to properties of the algorithm, properties of the instance or instances to be
solved can also have a dramatic effect on scalability. If such properties can be predicted or
discovered in advance, modification of the algorithm may lead to improved efficiency. In
the case of a MILP instance about which nothing is initially known, the situation is more
difficult and efficiency can suffer, even with a well-designed algorithm.

18

The main properties that are relevant when considering solution of a particular problem
class are:

• the length of time it takes to process a search tree node relative to total solution time;

• the length of time it takes to process nodes shallow in the tree relative to the length
of time it takes to process nodes at deeper levels; and

• the effectiveness of the initial upper bounding method.

In the first two cases, if the length of time it takes to process a search tree node is short
relative to solution time, then the number of nodes in the search tree may be very large and
this could result in an excessive amount of time spent load balancing. On the other hand,
if the processing time per node is long relative to solution time, especially near the top of
the tree, then the ramp-up phase may rob the overall algorithm of efficiency.

The effect of the initial upper bounding method is somewhat less clear. If the initial
upper bound is optimal (or close to optimal), then the goal of the algorithm becomes proving
optimality of the known solution. In this case, the search order (and hence load balancing)
is much less important, and scalability is generally easier to achieve. On the other hand, if
the initial upper bound is not near optimal, the solution time depends to a much greater
extent on when an optimal or near-optimal solution is discovered during the search process.
One may be fortunate and discover the optimal solution relatively early in the process when
searching in parallel, while not discovering the solution until late in the sequential search.
Such early discovery of the optimal solution can reduce the size of the search tree and make
node processing more efficient by allowing the bounds on variables to be tightened based
on the size of the reduced costs and the optimality gap.

4 Algorithms

In this section, we briefly review the implementation of two frameworks we have developed
based on the concepts just described. The first is SYMPHONY, which is written in C and
takes a very centralized approach to knowledge management. The second is ALPS, a C++
framework, which takes a completely decentralized approach to knowledge management.

4.1 SYMPHONY

SYMPHONY is both a “black-box” MILP solver with an associated callable library and a
highly customizable framework for implementing branch-and-cut algorithms tailored to spe-
cific applications [52, 59]. SYMPHONY evolved from the COMPSys framework of Ralphs
and Ladányi [36, 55] and is now part of the Computational Infrastructure for Operations Re-
search (COIN-OR) [12]. The source code for packaged releases is available for download and
is licensed under the open-source Common Public License (CPL) [58]. The source code for
the current development version is available from the COIN-OR source code repository [12].
SYMPHONY is fully documented, with a complete set of examples and specialized solvers
included with the distribution. The solver contains several advanced features not available
in other MILP codes, such as the ability to solve multi-criteria MILPs, the ability to warm

19

start the solution procedure, and the ability to perform basic sensitivity analyses. The
basic algorithm can be modified and customized solvers built by the user through the use
of numerous parameters and callback functions.

4.1.1 Knowledge Management

SYMPHONY employs a highly centralized knowledge management scheme. In particular,
the algorithm maintains a single central node pool from which nodes are distributed for
processing. The use of a central node pool means that accurate global information about
the tree is always available, but only from the central server. This simplifies certain aspects
of the parallel implementation dramatically, but also limits scalability, as the central pool
inevitably becomes a bottleneck when a large number of processors are dedicated to node
processing. Cuts can be stored either in a single central pool or in multiple pools, each ded-
icated to a particular subtree. Using a single cut pool creates another potential bottleneck,
but the use of multiple pools may decrease effectiveness by limiting the extent to which
cuts are shared throughout the search tree. We will discuss these tradeoffs in more detail
in Section 4.1.3 below.

4.1.2 Task Management

SYMPHONY is implemented in C using a modular design that enables easy and highly
configurable parallelization. There are five independent modules, each responsible for a
distinct set of tasks. The master module is responsible for overall execution, including
input and output, and the creation of all other modules. Of the other four modules, the
node processing (NP) and cut generation (CG) modules are responsible for generation of
new knowledge (node descriptions, feasible solutions, and valid inequalities), while the tree
management (TM) and cut management modules are responsible for storage and manage-
ment of previously generated knowledge (node descriptions and valid inequalities). The
current incumbent is stored and broadcast by the master module.

SYMPHONY can be built and run in three different modes—sequential, parallel with
shared memory, and parallel with distributed memory. We concentrate here on the dis-
tributed memory implementation. As a distributed memory code, the modules can be
combined in a number of different ways at compile-time in order to produce executables
capable of performing multiple functions. The most typical configuration is to combine the
master, tree management, and cut management modules into a single executable responsible
for all knowledge storage functions, while combining the node processing and cut generation
modules into a single executable responsible for all knowledge generation processes. This
configuration is very efficient for small numbers of processors, but makes the central knowl-
edge storage process an even more significant computational bottleneck. For larger numbers
of processors, locating the cut manager(s) on separate processors can provide some relief
from this. Separating the master and tree manager modules or the node processing and cut
generation modules provides little advantage in most cases. Below, we provide some details
of the purpose and implementation of each module.

20

The Master Module. The master module performs problem initialization and I/O,
stores problem data, stores and reports the results of solution procedure calls, and provides
the user interface. Data stored in the master module is persistent and is maintained between
solution procedure calls. Such data include information for warm starting of the solution
procedure and lists of cuts generated by previous solution procedure calls. Retention of
these data can facilitate the solution of sequences of slightly modified instances (such as
those that arise in decomposition algorithms, among others).

The master module is not heavily tasked once the computation has begun, but func-
tions independently in order to monitor the status of the solution procedure. The specific
functions performed by the master module include the following tasks:

• Read in the parameters from a data file.

• Read in the data for the problem instance.

• Compute an initial upper bound using heuristics (may also be done in parallel).

• Perform problem preprocessing and determine the problem core (see the description
of the TM module below).

• Create the tree manager module and initialize the algorithm by sending start data
(either a description of the root node or warm starting data) to the TM module.

• Collect the output during the solution procedure and pass it to the output device.

• Process requests for problem data from remote processors.

• Receive new solutions and store them.

• Ensure that all other modules are still functioning.

• Store and report results at algorithm termination.

• Store any persistent data, such as warm starting information, needed for future solu-
tion procedure calls.

The Tree Management Module. Each time SYMPHONY’s solution procedure is in-
voked, a new TM module is created to control the overall execution of the algorithm. The
main task of the TM module is to act as the central node pool, maintaining the search
tree and distributing descriptions of the nodes to be processed to the NP modules. After
each node is processed, the responsible NP module sends the results to the TM module and
queries it for the next next node to be processed, which is either a child of the node whose
processing was just completed (and hence available locally) or a new node from the list of
candidates, depending on the search strategy being employed. Specific functions performed
by the TM module are:

• Receive start data and initialize the list of candidates for processing (typically just
the root node).

• Handle requests from NP modules to determine the next subproblem for processing.

21

• Receive the results of node processing and partitioning, create the child nodes (if
necessary), and add them to the list of candidate subproblems.

• Keep track of the global upper bound and notify all node processing modules when it
changes.

• Write current state information out to disk periodically to allow a restart in the event
of a system crash.

• Keep track of run data and send it to the master program at termination.

Because of the single-pool approach taken by SYMPHONY, the search tree can be stored
very efficiently. The set of active inequalities and the description of the basis tend not to
change much from parent to child, so all of these data can be stored as differences with
respect to the parent when that description is smaller than the explicit one. This method
of storing the entire tree is highly memory-efficient. The list of nodes that are candidates
for processing is stored in a heap ordered by a comparison function defined by the search
strategy. This allows efficient generation of the next node to be processed.

The size of the node descriptions themselves is limited by allowing the user to specify
a problem core, consisting of a set of variables and constraints that are to be active in
every subproblem. The core normally consists of a set of variables and constraints that are
considered “important” for the given instance, in the sense that there is a high probability
that they will be needed to describe an optimal solution. The main importance of the core is
that its description can be stored statically at each of the processors and need not be part of
each individual node description. This saves on both node set-up costs and communication
costs, as well as making storage of the search tree more efficient.

The Cut Management Module. The concept of a cut pool was first suggested by Pad-
berg and Rinaldi [51], based on the observation that inequalities generated while processing
a given node in the search tree may potentially be useful at other nodes. Since generation of
cuts is sometimes a relatively expensive operation, the cut management module can main-
tain a list of the “best” or “strongest” cuts found in the tree thus far for use in processing
future subproblems. The cut management modules are thus knowledge pools that can be
queried by the NP modules for violated valid inequalities to be added to the current LP
relaxation. As mentioned previously, multiple cut management modules can be used, in
which case each one services a separate subtree. More explicitly, the functions of the cut
management module are:

• Receive cuts generated by other modules and store them.

• Receive a solution and return a set of cuts eligible to enter the current LP relaxation.

• Periodically purge “ineffective” and duplicate cuts to control the size of the pool.

The Node Processing Module. The NP modules are responsible both for processing
and partitioning of search tree nodes. Each node is processed completely and partitioned
before the results are sent to the TM module—there is no option for partial processing

22

or processing without partitioning. These operations are, of course, central to the perfor-
mance of the algorithm and comprise a large part of the “useful” work. Search tree nodes
are processed in an iterative loop similar to that described in Figure 1. First, the initial
LP relaxation is solved, then cuts are generated based on that solution, the relaxation is
augmented, and the cycle repeats. This continues until either no more new cuts can be
generated or the bound improvement in each round becomes too small, at which point
branching occurs. Branching is accomplished by choosing one or more cuts or variables and
partitioning the range of allowable values by changing the associated bounds or right hand
side ranges. Functions performed by the NP module are:

• Inform the TM module when a new subproblem is needed.

• Receive a subproblem and process it, in conjunction with the cut management module.

• Decide which cuts should be sent to the global pool to be made available to other NP
modules.

• If necessary, choose a branching set and send its description back to the TM module.

• Perform the fathoming operation.

The Cut Generation Module. The CG module performs only one function—that of
generating valid inequalities violated by the current LP solution and sending them back to
the requesting NP module. The current implementation allows for only one dedicated CG
module per NP module. The functions performed by the cut generator module are:

• Receive an LP solution and attempt to separate it from the convex hull of all solutions.

• Send generated valid inequalities back to the NP module.

• When finished processing a solution vector, inform the NP module not to expect any
more cuts in case it is still waiting.

4.1.3 Scalability

The main computational task in SYMPHONY consists of the processing and (possible)
partitioning of a single subproblem. After processing and partitioning a subproblem, the
NP module must return the results to the TM module and query it to determine its next
task. SYMPHONY uses global indices to identify cuts, so the NP modules must also query
the TM module for the assignment of these indices, as well as querying the cut management
modules(s) for violated valid inequalities. Because of these synchronization steps and the
centralized approach to knowledge storage, load balancing is not an issue in SYMPHONY.
The NP modules have no local node pools, so work distribution is simply a matter of sending
the candidate node with the highest priority to each NP module at the time of its request
or instructing it to continue working on one of the children of the node it just finished
processing.

As with most implementations of parallel branch and bound, ramp-up time is a major
contributor to parallel overhead. If desired, SYMPHONY can employ a “quick branching”

23

strategy similar to the one described earlier, in which branching occurs after a fixed number
of iterations in the NP module regardless of whether or not new cuts have been generated.
This strategy is pursued until all processors have useful work to do, after which the usual
algorithm is resumed. This strategy has shown little success, however. No other strate-
gies for decreasing ramp-up time or otherwise employing processors during this phase are
available in SYMPHONY.

The fact that all NP modules must frequently query the single TM module also leads
to scalability issues during the primary phase. Almost all of the overhead in SYMPHONY
during this phase is either communications overhead (time spent packing, sending, receiv-
ing, and unpacking messages) or time spent idle waiting for an answer to a query sent to a
knowledge pool. The majority of this idle time is associated with communication between
the TM and NP modules regarding node processing. Additional idle time may be incurred
waiting for the cut pool to answer its queries. When either of these knowledge storage mod-
ules become overtasked, idle time can increase dramatically. For this reason, SYMPHONY
cannot typically achieve good scalability beyond 32 processors, as we discuss in Section 5.

4.2 ALPS

The Abstract Library for Parallel Search (ALPS) [61, 70] is a C++ framework for imple-
menting customized versions of parallel tree search. Tree search is an algorithmic paradigm
in which the nodes of a directed, acyclic graph are systematically searched in order to locate
one or more goal nodes. A wide variety of specialized algorithms, including branch and cut,
can be classified as tree search algorithms. Because of its more general approach, ALPS
supports the implementation of a wider variety of algorithms and applications than SYM-
PHONY. Like SYMPHONY, ALPS is part of the COIN-OR repository [12]. The source
code is licensed under the open-source Common Public License (CPL) and is available from
the COIN-OR source code repository [12]. The library of C++ classes that constitutes
ALPS can be derived to implement specialized classes that define various tree search al-
gorithms. Two libraries built on top of ALPS, called the Branch, Constrain, and Prices
Software (BiCePS) and the BiCePS Linear Integer Solver (BLIS), implement the special-
ized methods required for branch and cut. Two prototype solvers built with ALPS, one
for solving the well-known knapsack problem and one for solving generic MILPs, are also
available for download.

4.2.1 Knowledge Management

In contrast to SYMPHONY, ALPS takes an almost completely decentralized approach to
knowledge management. In [62], building on ideas in [67], we proposed a tree search method-
ology driven by the concepts of knowledge discovery and sharing discussed in Section 2.2.3.
This methodology is the basis for the class structure of ALPS. A central notion in ALPS is
that all information generated during execution of the search is treated as knowledge and
is represented by C++ objects derived from a single common base class described below.

The most fundamental knowledge objects generated during the search are the descrip-
tions of the search tree nodes themselves, which are organized locally into subtrees. To avoid
the bottlenecks associated with central storage of the entire candidate list, every processor

24

responsible for node processing hosts its own local node pool from which the node pro-
cessing task can draw new candidates. The local node pools collectively contain the global
list of candidate nodes, which are shared through the load balancing procedure described
in Section 4.2.3. To further avoid the introduction of bottlenecks, load balancing is per-
formed using a three-level scheme we call the master-hub-worker paradigm, also discussed
in Section 4.2.3 below.

The AlpsKnowledge class is the virtual base class for any type of information that must
be shared or moved from one processor to another. AlpsEncoded is an associated class
that contains an encoded or packed form of an AlpsKnowledge object, which consists of
a bit array containing the data needed to replicate the object. This representation takes
less memory than the object itself and is appropriate both for storage of knowledge and
for transmission of knowledge between processors. The packed form is also independent of
type, which allows ALPS to deal effectively with user-defined knowledge types. To avoid the
assignment of global indices, ALPS uses hashing of the packed form to identify duplicate
objects. ALPS has the following four native knowledge types:

• AlpsSolution: Contains the description of a goal state or solution to the problem
being solved.

• AlpsTreeNode: Contains the data and methods associated with a node in the search
graph, including a node description (of type AlpsNodeDesc) and the definitions of the
process and branch methods.

• AlpsModel: Contains the data describing the original problem.

• AlpsSubTree: Contains the description of a subtree, which is a hierarchy of AlpsTreeNode
objects, along with the methods needed for performing a tree search.

The first three of these classes are virtual and must be defined by the user in the context
of the problem being solved. The last class is generic and application-independent.

The AlpsKnowledgePool class is the virtual base class for knowledge pools in ALPS.
This base class can be derived to define a KP for a specific type of knowledge or multiple
types. The native KP types are:

• AlpsSolutionPool: The solution pools store AlpsSolution objects. These pools ex-
ist both at the worker level—for storing solutions discovered locally—and globally at
the master level.

• AlpsSubTreePool: The subtree pools store AlpsSubTree objects. These pools exist
at the hub level for storing subtrees that still contain unprocessed nodes.

• AlpsNodePool: The node pools store AlpsTreeNode objects. These pools contain the
queues of candidate nodes associated with the subtrees as they are being searched.

None of these classes are virtual and their methods are implemented independent of any
specific application.

25

4.2.2 Task Management

In ALPS, each processor hosts a single, multi-tasking executable controlled by a knowledge
broker (KB). The KB is tasked with routing all knowledge to and from the processor and
determining the priority of each task assigned to the processor. A crude version of threading
allows the single executable to performs multiple tasks, which can include hosting multiple
knowledge pools, processing candidate nodes, or generating application-specific knowledge,
e.g., valid inequalities. Each specific type of knowledge, represented by a C++ class derived
from AlpsKnowledge, must be registered at the inception of the algorithm so that the KB
knows how to route it when it arrives and where to send requests for knowledge from other
KBs. The KB associated with a particular KP may field two types of requests on its behalf:
(1) new knowledge to be inserted into the KP, or (2) a request for relevant knowledge to
be extracted from the KP, where “relevant” is defined for each category of knowledge with
respect to data provided by the requesting process. A KP may also choose to “push” certain
knowledge to another KP, even though no specific request has been made.

Derivatives of the AlpsKnowledgeBroker class implement the KB and encapsulate the
desired communication protocol. Switching from a parallel application to a sequential one is
simply a matter of constructing a different KB object. Currently, the protocols supported
are a serial layer, implemented in AlpsKnowledgeBrokerSerial, and an MPI [27] layer,
implemented in AlpsKnowledgeBrokerMPI.

4.2.3 Scalability

In contrast to SYMPHONY, the basic computational task in ALPS is to process all the
nodes of a subtree with a given root node. Each worker is capable of processing an entire
subtree autonomously and has access to all of the methods needed to manage a sequential
tree search. The potential for increased granularity reduces idle time due to task starvation,
but, without proper load balancing, may increase the performance of redundant work. Be-
cause the processing of a subtree can be an extremely lengthy and unpredictable procedure,
the task can be interrupted at any time for the purpose of load balancing and may even be
preempted if higher-priority work is made available. By storing subtrees as a complete unit,
it is possible to use a data structure based on the concept of differencing introduced earlier
in Section 4.1.2. This may help to minimize memory requirements, which could potentially
be increased by the decentralized node storage scheme.

To overcome the drawbacks of the master-worker approach employed by SYMPHONY,
ALPS employs a master-hub-worker paradigm, in which a layer of “middle management”
is inserted between the master process and the worker processes. In this scheme, a cluster
consists of a hub and a fixed number of workers. Within a cluster, the hub manages
the workers and supervises load balancing, while the master ensures the load is balanced
globally. As the number of processors is increased, clusters can be added in order to keep
the load of the hubs and workers relatively constant. The workload of the master process
can be managed by controlling the frequency of global balancing operations. This scheme
is similar to one implemented by Eckstein et al. in the PICO framework [16], except that
PICO does not have the concept of a master. The decentralized approach maintains many
of the advantages of global decision making while reducing overhead and moving much
of the burden for load balancing and search management from the master to the hubs.

26

This burden is then further shifted from the hubs to the workers by increasing the task
granularity, as described below.

Because all processes are completely autonomous in ALPS, the biggest scalability issues
are idle time during ramp-up and effective load balancing. In ALPS, each node has an
associated priority that indicates the node’s relative “quality,” i.e., the probability that
the node or one of its successors is a goal node. In assessing the distribution of work to
the processors, we consider both quantity and quality. ALPS employs a three-tiered load
balancing scheme, consisting of static, intra-cluster dynamic, and inter-cluster dynamic load
balancing.

Static load balancing, or mapping, takes place during the ramp-up phase. The main
task is to generate the initial pool of candidate nodes and distribute them to the workers
to initialize their local node pools. ALPS uses a two-level root initialization scheme, a
generalization of the root initialization scheme of [31]. During static load balancing, the
master creates and distributes a user-specified number of nodes to the hubs. The hubs
in turn create and distribute a user-specified number of successors to their workers, after
which the workers initialize their subtree pools and begin. Time spent performing static
load balancing is the main source of ramp-up, which can be significant when node processing
times are large.

Inside a cluster, the hub manages dynamic load balancing by periodically receiving
workload reports from cluster members. If it is found that the qualities are unbalanced,
the hub asks workers with a surplus of high-priority nodes to share them with workers that
have fewer such nodes. Intra-cluster load balancing can also be initiated when an individual
worker reports to the hub that its workload is below a given threshold. Upon receiving the
request, the hub asks its most loaded worker to donate nodes to the requesting worker.

The master is responsible for balancing the workload among hubs, which periodically
report their workload information to the master. The master has an approximate global
view of the system load and the load of each cluster at all times. If either the quantity or
quality of work is unbalanced among the clusters, the master identifies pairs of donors and
receivers. Donors are clusters whose workloads are greater than the average workload of
all clusters by a given factor. Receivers are clusters whose workloads are smaller than the
average workload by a given factor. Donors and receivers are paired and each donor sends
nodes to its paired receiver.

A unique aspect of the load balancing scheme in ALPS is that it takes account of the
differencing scheme for storing subtrees. In order to allow efficient storage of search tree
nodes using differencing, we try at all times to ensure that search tree nodes are shared
in a way such that those sent and stored together locally constitute connected subtrees of
the search tree. To accomplish this, groups of candidate nodes that constitute the leaves of
a given subtree are shared as a single unit, rather than being shared as individual nodes.
Each subtree is assigned a priority, defined as the average of the priorities of a given number
of its best nodes. During load balancing, the donor chooses the best subtree in its subtree
pool and sends it to the receiver. If a donor does not have any subtrees to share, it splits the
subtree that it is currently exploring into two parts and sends one of them to the receiver.
In this way, differencing can still be used effectively, even without centralized storage of the
search tree.

27

5 Computation

To give the reader a better appreciation for the performance of the schemes we have just
described and for the specific components of overhead that are most prevalent, we now
present the results of computational studies involving the solution of MILP instances from
three different problem classes using the currently available beta version of SYMPHONY
5.1 and associated solvers. The LP relaxations were solved with the most recent version of
the COIN-OR LP solver [12], also available under the CPL. The problem classes here have
been chosen because they illustrate the wide range of properties that problem instances
can have and the scalability issues that arise because of them. All tests were performed
on a Beowulf cluster with 60 1.8 GHz 64-bit AMD Opteron processors, each with 1G local
memory. In Section 5.1, we analyze the solution of generic MILP instances, a wide ranging
class containing instances whose properties are generally difficult to predict in advance. We
report results from instances that exhibited good scalability, as well as a few that did not.
In Sections 5.2 and 5.3, we discuss the solution of two classical combinatorial optimization
problems, the Vehicle Routing Problem (VRP) and the Set Partitioning Problem (SPP).
In the case of the VRP, node processing times are short and scalability is relatively easy to
achieve. In the case of the SPP, node processing times can be extremely long and achieving
scalability is much more difficult.

For all runs, SYMPHONY was configured so that the master and TM modules ran
as a single process, with multiple combined NP and CG modules performing the node
processing and cut generations tasks. The number of NP/CG modules used ranged from
1 to 32. Except where noted, no global cut pools were used. For each set of runs, the
number of NP/CG modules used in the computation is identified. In parallel branch and
cut, the size of the search tree is subject to a good deal of random fluctuation due to
the asynchronous nature of the search. To reduce the effect of these fluctuations on the
analysis, we performed three identical runs of each experiment. The numbers that appear
in the tables of results are averages over these runs. We also report the timing information
on a “per node” basis, which separates the effect of fluctuations in the number of nodes
from fluctuations in the time needed to process a node, resulting in a much more consistent
view of the trends as the number of processors increases.

The results in the tables that appear here break the main sources of parallel overhead
down into specific identifiable components that were significant to SYMPHONY’s perfor-
mance. In the tables, the column headers have the following interpretations:

• Tree Size is the number of nodes in the search tree. Observing the change in the size
of the search tree as the number of processors is increased provides a rough measure
of the amount of redundant work. Ideally, the total number of nodes explored stays
constant as the number of processors is increased.

• Ramp-up and Ramp-down are the total accumulated idle time during periods before
and after the primary phase when the queue did not contain enough nodes to keep all
processors busy.

• Node Pack is the time spent by the TM module generating node descriptions. This can
be significant because explicit descriptions need to be constructed from the differenced
form in which they are stored. Note that this is technically not parallel overhead,

28

since it must be incurred even in the sequential algorithm. However, it does represent
computation required to support the differencing mechanism, which is needed in part
because of SYMPHONY’s centralized node scheme.

• Idle Nodes is the idle time spent by the NP module waiting for a new node description
to be sent from the TM module.

• Idle Cuts is the idle time spent by the NP module waiting for valid inequalities to be
sent from the cut management module (if applicable).

• Idle Index is the idle time spent by the NP module waiting for the TM module to
assign indices to valid inequalities still active at the termination of processing of a
search tree node or those being sent to the cut management module.

• Idle Diving is the idle time spent by the NP module waiting for instructions from the
TM module regarding whether to continue processing one of the available children of
the current node or wait for a new node from the global candidate list.

• CPU sec is the total CPU time used by all modules. Note that this does not include
idle time and hence can be significantly different from wallclock time, described below.

• Wallclock is the amount of real time used by the solution procedure from start to finish.
By multiplying wallclock running time by the number of processors and subtracting
CPU time, one can obtain a rough estimate of the idle time incurred by all processes
as a whole.

• Eff is the parallel efficiency and is equal to p time the wall clock running time with
1 NP/CG module divided by the wall clock running time with p NP/CG modules.
In other words, it is approximately the percentage of time spent by all processors
of the parallel algorithm doing “useful work,” where the amount of useful work to
be done is measured by the running time for the sequential algorithm. Note that the
statistic reported here is not precisely the parallel efficiency described in Section 2.2.2,
since the experiments with 1 NP/CG module were done in parallel as well (the single
NP/CG module was running in parallel with the TM module) and since we use the
number of NP/CG modules (not the number of processors) as the baseline. However,
the resulting numbers give a clear picture of the trends in efficiency and this should
not cause confusion.

5.1 Generic MILP

The test problems discussed below were selected from MIPLIB3 [8], MIPLIB2003 [45], and
a suite of instances available from the Computational Optimization Research at Lehigh
(COR@L) Web site [43]. For these tests, SYMPHONY was used as a black box solver, with
valid inequalities generated using subroutines from the Cut Generator Library, also part of
the COIN-OR repository [12]. Strong branching was used to make branching decisions and
the search strategy was a hybrid diving strategy in which one of the children of a given
node was retained as long as its bound was within a given percentage of the best available.

Table 1 in the Appendix shows the results of the first set of experiments, in which
SYMPHONY was run with default settings and no a priori upper bound. Detailed results

29

are shown for each instance in the test set for the runs with a single NP/CG module and
summary results only for all other runs. Table 2 shows the detailed results for the run with
32 NP/CG modules. For most of these instances, the time needed to process a search tree
node is small in comparison with the overall running time, which tends to lead to good
scalability. The results reflect this to a large extent, but as expected, overhead increases
across the board as the number of NP/CG modules is increased. The increase from 16
to 32 NP/CG modules results in a much more significant amount of parallel overhead
and a corresponding drop in efficiency. It is evident from these results that SYMPHONY
will probably not scale well beyond approximately 32 NP/CG modules for instances with
properties similar to these.

Examining each component of overhead in detail, we see that both ramp-up and ramp-
down time grow significantly as the number of NP/CG modules is increased. This overhead
is predictable, but difficult to eradicate. Time spent by the tree manager constructing node
descriptions (Node Pack) remains relatively constant, as expected, and is not a scalability
issue. The three columns representing idle time spent by the NP/CG modules waiting for
various queries to be answered by the TM module are the most significant and addressable
sources of inefficiency for SYMPHONY. The contention associated with the distribution of
new node descriptions (Idle Node) is the most significant, but would be difficult to address
without completely abandoning SYMPHONY’s master-worker architecture. The idle time
spent waiting for global indices to be assigned to cuts (Idle Index) and for decisions regarding
whether to retain one of the children of the current node for processing (Idle Dive), however,
might be reduced with a redesign of SYMPHONY’s methodology. Pre-assigning blocks of
indices to each NP/CG module could help alleviate the first of these bottlenecks, while
more autonomy with respect to deciding whether or not to dive could help alleviate the
second. These improvements would significantly improve SYMPHONY’s scalability, but
contention at the TM module could not be eliminated entirely without moving away from
SYMPHONY’s master-worker architecture.

To assess the degree of performance of redundant work, we examine the trends in the
total number of nodes in the search tree. For these experiments, as the number of NP/CG
modules is increased, the number of nodes in the search tree actually drops slightly, ac-
counting for the superlinear speedup observed with 4 and 8 NP/CG modules. This drop
is presumably due to the fact that feasible solutions are difficult to find for some instances
and are discovered earlier in the search process during the parallel runs, resulting in smaller
search trees. Overall, there is no evidence of additional redundant work being performed in
the presence of parallelism.

To test the effect of having a good a priori upper bound, we performed a similar set
of experiments in which the optimal solution value was provided a priori, so that the goal
was simply to prove optimality of a known solution. The results (with a slightly smaller
test set) are shown in Table 3. In this case, it is advantageous to follow an unconditional
diving strategy in which the child of the current node is always preferred when there is
one. This eliminates redundant work, but the results still exhibit a very slight increase in
the number of search nodes as the number of NP/CG modules is increased. This hurts the
parallel efficiency, but the provision of an a priori upper bound still improves solution times
across the board in comparison to those in Table 1. Note that the total amount of overhead,
especially the ramp down and the idle time spent waiting for new node descriptions to be
sent from the TM module are very significantly reduced for these runs over the runs with

30

default settings. This is because the depth-first strategy employed requires far fewer new
candidate nodes to be sent from the TM module to the NP/CG modules. Despite this,
the calculated efficiencies are similar because the basis of comparison in each case is itself
a parallel run with a single NP/CG module. Because the baseline run with the depth-first
strategy exhibits a much lower level of overhead to begin with than the baseline run with the
default strategy, the relative efficiencies calculated are similar. Despite this, the depth-first
approach is clearly superior in terms of the absolute level of overhead if an priori bound
close to optimal is known.

To illustrate how variations in individual instances can effect scalability, Tables 4–6 show
the scalability of three instances not included in the larger test set. Instance pk1 has a large
search tree and relatively short node processing times, but still exhibits poor scalability, with
all categories of overhead higher than expected. The large amount of ramp-down time is
particularly intriguing for this instance. Instance p2756 exhibits very significant increases in
the size of its search tree (indicating the performance of redundant work) as the number of
NP/CG modules increases, resulting in increased overall running times beyond two NP/CG
modules. Finally, instance nw04 is a set partitioning instance for which node processing
times are extremely lengthy. Although initially exhibiting superlinear speedup (presumably
due to earlier location of the optimal solution) and a drop in search tree size, the efficiency
is eventually wiped out by significant increases in ramp-up time.

5.2 Vehicle Routing Problem

We next consider solution of instances of the well-known Vehicle Routing Problem intro-
duced by Dantzig and Ramser [14]. In the VRP, a fleet of k vehicles with uniform capacity
C must service known customer demands for a single commodity from a common depot
at minimum cost. Let V = {1, . . . , |V |} index the set of customers and let the depot have
index 0. Associated with each customer i ∈ V is a demand di. The cost of travel from
customer i to j is denoted cij . We assume that cij = cji > 0 ∀i, j ∈ V ∪ {0}, i 6= j and
that cii = 0 ∀i ∈ V ∪{0}. By constructing an associated complete undirected graph G with
vertex set V ∪ {0} and edge set E, we can formulate the VRP as an integer program.

The instances in the test set were selected from a test set maintained by the author [53]
and were solved with an application written by the author using SYMPHONY. Both the
instances and the solver are available for download [54]. The solver has previously been
described in [56] and [55]. The VRP is an ideal candidate for parallelization, since node
processing times are consistently small relative to overall solution times and good a priori
upper bounds are easy to generate. Table 7 in the Appendix shows the results of the first
set of experiments in which the solver was run with default settings using an upper bound
determined heuristically (not necessarily optimal) before starting the solution procedure.
Detailed results are shown for each instance in the test set for the runs with 1 NP/CG
module and summary results only for all other runs. Table 8 shows detailed results for the
run with 32 NP/CG modules. In terms of efficiency, the results are similar to those for the
generic MILP instances in Section 5.1, but the levels of overhead are much smaller. As in
the case of the generic MILP instances, because the baseline levels of overhead are small to
begin with, the efficiencies are similar in each case.

Table 9 shows results of a slightly smaller set of instances with no a priori upper bounds

31

given. Here, the running times are longer and the search trees are bigger, but in terms of
efficiency, the results are similar to those in Table 7. Finally, Table 10 shows the results with
the same set of instances using a global cut pool. The use of the global pool decreases the
size of the search tree, but introduces another source of idle time during node processing—
time spent waiting for the global pool to return a set of violated valid inequalities. Overall,
the additional overhead is worthwhile and is offset by a decrease in the number of search
tree nodes. It is interesting to note, however, that the use of the global cut pool does cause
a loss in efficiency. We conjecture that this is because the effect of the pool is lessened as the
number of NP/CG modules is increased since effective inequalities have less time be shared
after being discovered and therefore have a smaller effect. The difference in running times
is relatively large for the runs with 1 NP/CG module, but there is almost no difference in
the running times for the 32 NP/CG module runs, resulting in the observed relative loss of
efficiency.

5.3 The Set Partitioning Problem

Finally, we consider the well-known Set Partitioning Problem. Given a ground set S of m
objects and a collection G = {S1, . . . , Sn} of subsets of S with associated costs cj , 1 ≤ j ≤ n,
the SPP is to select a subset of G of minimum (or maximum) total cost such that the selected
members are disjoint and their union is equal to S. In other words, the problem is to choose
a minimum (or maximum) cost partitioning of the ground set from among the members of
G. In contrast to the VRP, set partitioning problems are exceptionally difficult to solve in
parallel because the time required to process a node can be extremely long. This is both
because the LP relaxations are extremely difficult to solve and because it takes a significant
amount of preprocessing, as well as a number of rounds of cut generation, to process each
node. For this reason, most instances that can be solved in a reasonable time produce very
small trees. This means that for most instances, the ramp-up phase dominates the total
running time.

For our tests, we used the SPP solver originally implemented by Esö and described in
[17]. The solver, which includes its own custom cut generator and other application-specific
methodology, was updated to work with the current version of SYMPHONY by the author
and is available for download [18]. The instances reported on here are from a test set also
described in [17] and compiled from a number of different sources, including major airlines.
In preliminary testing, most of the instances exhibited very poor scalability—it was not
difficult to find instances for which the root node itself took several hours to process. The
results in the tables are for five instances selected from those in [17] that exhibit the most
reasonable scalability with SYMPHONY “out of the box.” The small cardinality of this
test set should serve to emphasize that these instances are the exception to the rule.

As in the previous section, Table 11 shows summary results obtained when solving these
five instances with different numbers of NP/CG modules. Detailed results are shown only
for the case with 1 NP/CG module. Table 12 shows results for the runs with 32 NP/CG
modules. As could be expected, the results show that the node processing times are an order
of magnitude larger than for the instances in Sections 5.1 and 5.2, so overhead is dominated
very substantially by ramp-up and ramp-down time. Even for these relatively well-behaved
instances, the efficiency that can be obtained with a straightforward implementation such
as we have described here is very low. In [41] and [17], it was shown that achieving high

32

efficiency when solving the SPP can be achieved only if other parts of the algorithm, such
as cut generation, execution of primal heuristics, and preprocessing, are also parallelized.

6 Conclusions and Future Work

In this paper, we have introduced the basic concepts and methodology required for par-
allelization of the branch-and-cut algorithm. Parallelizing branch and cut in a scalable
fashion is a challenge that involves careful analysis of the costs and benefits of synchroniza-
tion and the sharing of knowledge during the algorithm. Because this analysis can yield
different results for different problem classes, it is not possible in general to develop a single
ideal approach that will be effective across all problem classes. The synchronous approach
taken by SYMPHONY is very effective for small numbers of processors, but is not scalable
beyond about 32 processors, even under ideal conditions. Large-scale parallelism requires
an asynchronous approach, such as that taken by ALPS, that avoids creating bottlenecks
in communication. In future work, we plan to continue developing ALPS, with the goal of
correcting SYMPHONY’s deficiencies and achieving the scalability needed to run on much
larger computational platforms.

Appendix: Tables of Results

33

In
st

an
ce

T
re

e
Si

ze
R

am
p

U
p

R
am

p
D

ow
n

N
od

e
P
ac

k
Id

le
N

od
e

Id
le

In
de

x
Id

le
D

iv
e

C
P

U
se

c
W

al
lc

lo
ck

E
ff

23
58

8
59

1
0.

00
0.

00
0.

02
0.

09
0.

02
0.

09
52

.5
6

53
.5

2
al

ig
ni

nq
76

1
0.

00
0.

00
0.

07
0.

43
0.

02
0.

09
22

5.
42

22
9.

14
be

ll3
a

24
95

7
0.

00
0.

00
1.

48
4.

16
0.

22
4.

08
17

1.
96

19
1.

45
bl

en
d2

21
05

0.
00

0.
00

0.
13

0.
56

0.
26

0.
37

84
.8

4
89

.4
6

en
ig

m
a

30
46

0.
00

0.
00

0.
03

0.
08

0.
19

0.
56

35
.0

5
38

.2
1

fix
ne

t6
14

38
0.

00
0.

00
0.

18
1.

38
0.

13
0.

24
10

6.
55

11
1.

87
ge

sa
2

46
34

0.
00

0.
00

0.
97

6.
79

0.
74

1.
06

95
0.

50
10

01
.0

8
ge

as
2

o
66

2
0.

00
0.

00
0.

12
0.

93
0.

09
0.

12
12

8.
66

13
5.

04
l1

52
la

v
13

26
0.

00
0.

00
0.

19
1.

32
0.

26
0.

21
32

2.
27

32
9.

44
m

is
c0

7
12

60
6

0.
00

0.
00

1.
24

3.
83

0.
76

1.
77

11
86

.9
9

12
41

.2
2

m
od

00
8

16
81

0.
00

0.
00

0.
25

2.
40

0.
70

0.
23

21
24

.1
9

21
89

.7
9

pg
18

68
0.

00
0.

00
0.

07
0.

40
0.

30
0.

45
40

2.
43

41
8.

29
pp

08
a

46
38

5
0.

00
0.

00
44

.7
6

69
.4

4
8.

15
44

.3
1

21
86

.6
9

23
60

.8
1

pp
08

aC
U

T
S

68
09

3
0.

00
0.

00
10

8.
32

13
7.

13
11

.9
6

11
4.

16
40

23
.6

2
43

73
.3

0
rg

n
12

84
0.

00
0.

00
0.

05
0.

42
0.

08
0.

15
10

.9
2

12
.0

0
ro

y
34

6
0.

00
0.

00
0.

01
0.

08
0.

06
0.

05
12

.5
3

13
.1

8
st

ei
n2

7
15

89
0.

00
0.

00
0.

05
0.

48
0.

31
0.

14
57

.3
8

60
.0

6
st

ei
n4

5
12

10
8

0.
00

0.
00

1.
44

8.
82

4.
37

1.
68

22
81

.7
3

23
24

.8
5

vp
m

1
10

01
2

0.
00

0.
00

0.
65

4.
33

0.
86

1.
19

24
5.

64
25

7.
89

vp
m

2
11

44
4

0.
00

0.
00

1.
51

7.
60

1.
39

1.
56

45
9.

96
47

7.
37

bi
en

st
1

13
37

2
0.

00
0.

00
1.

88
7.

11
1.

53
2.

14
31

80
.4

4
32

29
.2

5
p0

28
2

53
8

0.
00

0.
00

0.
03

0.
28

0.
09

0.
09

30
.3

7
36

.7
0

1
N

P
22

08
46

0.
00

0.
00

16
3.

45
25

8.
09

32
.4

9
17

4.
74

18
28

0.
70

19
17

3.
94

1.
00

P
er

N
od

e
0.

00
00

0.
00

00
0.

00
07

0.
00

12
0.

00
01

0.
00

08
0.

08
28

0.
08

68
2

N
P
′ s

22
42

66
18

.4
1

0.
01

16
6.

45
27

1.
57

35
.9

9
17

7.
14

18
35

7.
87

96
97

.6
1

0.
99

P
er

N
od

e
0.

00
01

0.
00

00
0.

00
07

0.
00

12
0.

00
02

0.
00

08
0.

08
19

0.
08

65
4

N
P
′ s

22
24

46
60

.2
9

2.
46

16
1.

70
30

6.
21

45
.0

2
17

8.
13

17
82

2.
92

47
37

.2
8

1.
02

P
er

N
od

e
0.

00
03

0.
00

00
0.

00
07

0.
00

14
0.

00
02

0.
00

08
0.

08
01

0.
08

52
8

N
P
′ s

21
39

54
16

3.
26

12
7.

87
13

9.
33

37
8.

45
59

.0
6

17
1.

20
17

43
3.

65
23

95
.2

8
1.

01
P
er

N
od

e
0.

00
08

0.
00

06
0.

00
07

0.
00

18
0.

00
03

0.
00

08
0.

08
15

0.
08

96
16

N
P
′ s

21
55

97
39

3.
70

60
5.

28
12

8.
37

61
7.

01
12

3.
56

26
5.

65
17

12
7.

50
12

77
.0

9
0.

94
P
er

N
od

e
0.

00
18

0.
00

28
0.

00
06

0.
00

29
0.

00
06

0.
00

12
0.

07
94

0.
09

48
32

N
P
′ s

21
26

72
91

1.
73

22
82

.1
3

14
8.

22
25

06
.5

8
69

3.
08

10
35

.3
5

16
72

3.
89

79
4.

87
0.

75
P
er

N
od

e
0.

00
43

0.
01

07
0.

00
07

0.
01

18
0.

00
33

0.
00

49
0.

07
86

0.
11

96

T
ab

le
1:

So
lv

in
g

ge
ne

ri
c

M
IL

P
s

w
it

h
SY

M
P

H
O

N
Y

:
D

ef
au

lt
se

tt
in

gs
an

d
no

a
pr

io
ri

up
pe

r
bo

un
d

(s
um

m
ar

y)

34

In
st

an
ce

T
re

e
Si

ze
R

am
p

U
p

R
am

p
D

ow
n

N
od

e
P
ac

k
Id

le
N

od
e

Id
le

In
de

x
Id

le
D

iv
e

C
P

U
se

c
W

al
lc

lo
ck

23
58

8
58

2
27

.6
0

0.
00

0.
03

0.
07

0.
02

0.
09

56
.2

9
2.

76
al

ig
ni

nq
11

39
98

.1
9

0.
00

0.
14

0.
67

0.
02

0.
13

36
2.

38
14

.9
0

be
ll3

a
24

12
8

2.
46

10
.3

9
2.

43
33

.7
7

1.
13

16
.1

0
17

2.
69

7.
54

bl
en

d2
21

04
6.

03
0.

25
0.

13
0.

72
0.

81
1.

32
81

.2
7

3.
25

en
ig

m
a

29
2

3.
09

0.
00

0.
00

0.
07

0.
01

0.
06

2.
64

0.
23

fix
ne

t6
17

05
12

.5
9

0.
00

0.
23

1.
27

0.
19

0.
34

11
9.

65
4.

44
ge

sa
2

53
24

14
8.

49
0.

21
1.

33
8.

50
1.

12
2.

27
10

08
.8

8
38

.4
1

ge
as

2
o

11
23

44
.2

7
0.

00
0.

18
1.

04
0.

11
0.

23
18

4.
86

8.
06

l1
52

la
v

89
1

78
.0

2
0.

00
0.

14
0.

66
0.

18
0.

12
20

4.
12

9.
20

m
is

c0
7

89
89

33
.6

0
0.

78
0.

96
4.

84
0.

95
2.

15
80

9.
08

27
.4

2
m

od
00

8
17

11
1.

97
12

94
.4

2
0.

29
50

.8
8

1.
12

0.
64

10
43

.7
2

12
5.

00
pg

12
31

30
6.

90
7.

44
0.

06
0.

89
0.

56
0.

64
28

6.
77

22
.8

6
pp

08
a

41
22

3
25

.7
2

23
0.

78
38

.4
0

59
3.

43
17

4.
32

28
0.

19
18

25
.5

4
92

.4
4

pp
08

aC
U

T
S

62
52

9
22

.2
2

70
7.

14
93

.6
4

17
53

.5
0

49
0.

87
70

9.
92

37
66

.7
9

21
4.

47
rg

n
13

57
5.

98
0.

66
0.

07
0.

66
0.

17
0.

32
11

.4
1

0.
69

ro
y

55
5

4.
26

11
.6

9
0.

02
0.

97
0.

08
0.

09
17

.3
5

1.
51

st
ei

n2
7

15
76

7.
33

0.
01

0.
07

0.
51

0.
36

0.
18

58
.1

1
2.

24
st

ei
n4

5
11

97
2

28
.6

8
3.

92
2.

39
13

.2
7

7.
87

4.
93

22
18

.9
4

72
.1

6
vp

m
1

14
12

3
11

.5
5

3.
42

1.
44

9.
06

1.
80

2.
70

33
7.

21
11

.8
8

vp
m

2
13

79
7

15
.2

3
3.

01
3.

77
19

.9
9

4.
83

6.
59

57
1.

51
19

.9
6

bi
en

st
1

14
18

3
15

.9
3

7.
99

2.
31

10
.9

1
6.

38
5.

86
35

22
.9

6
11

2.
94

p0
28

2
21

32
11

.6
3

0.
02

0.
16

0.
91

0.
21

0.
46

61
.7

1
2.

50
32

N
P
′ s

21
26

72
91

1.
73

22
82

.1
3

14
8.

22
25

06
.5

8
69

3.
08

10
35

.3
5

16
72

3.
89

79
4.

87
P
er

N
od

e
0.

00
43

0.
01

07
0.

00
07

0.
01

18
0.

00
33

0.
00

49
0.

07
86

0.
11

96

T
ab

le
2:

So
lv

in
g

ge
ne

ri
c

M
IL

P
s

w
it

h
SY

M
P

H
O

N
Y

:
D

ef
au

lt
se

tt
in

gs
an

d
no

a
pr

io
ri

up
pe

r
bo

un
d

(3
2

N
P

s)

35

In
st

an
ce

T
re

e
Si

ze
R

am
p

U
p

R
am

p
D

ow
n

N
od

e
P
ac

k
Id

le
N

od
e

Id
le

In
de

x
Id

le
D

iv
e

C
P

U
se

c
W

al
lc

lo
ck

E
ff

23
58

8
25

9
0.

00
0.

00
0.

00
0.

01
0.

01
0.

02
21

.8
6

22
.2

5
al

ig
ni

nq
18

92
0.

00
0.

00
0.

08
0.

51
0.

04
0.

15
44

3.
80

49
6.

96
be

ll3
a

23
04

8
0.

00
0.

00
0.

44
1.

35
0.

52
2.

98
17

4.
86

19
1.

40
bl

en
d2

10
99

0.
00

0.
00

0.
01

0.
01

0.
04

0.
06

30
.7

8
32

.1
2

en
ig

m
a

1
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

01
fix

ne
t6

52
9

0.
00

0.
00

0.
02

0.
12

0.
03

0.
06

29
.6

6
30

.9
7

ge
sa

2
17

07
0.

00
0.

00
0.

10
0.

76
0.

18
0.

17
39

6.
93

41
9.

19
ge

as
2

o
24

10
0.

00
0.

00
0.

18
0.

15
0.

07
0.

12
36

2.
61

37
7.

38
l1

52
la

v
15

53
0.

00
0.

00
0.

09
0.

54
0.

22
0.

16
28

9.
20

29
5.

78
m

is
c0

7
77

95
0.

00
0.

00
0.

22
0.

78
0.

37
0.

87
64

8.
57

66
5.

83
m

od
00

8
19

79
0.

00
0.

00
0.

04
0.

25
0.

20
0.

20
98

.2
7

15
0.

59
pg

79
3

0.
00

0.
00

0.
10

0.
58

0.
06

0.
11

20
2.

40
20

8.
07

pp
08

a
26

09
0

0.
00

0.
00

2.
05

11
.2

9
3.

12
4.

29
10

99
.4

7
11

51
.1

5
rg

n
14

66
0.

00
0.

00
0.

02
0.

18
0.

08
0.

15
11

.5
9

12
.8

1
ro

y
58

8
0.

00
0.

00
0.

01
0.

05
0.

05
0.

05
17

.9
2

18
.4

6
st

ei
n2

7
16

30
0.

00
0.

00
0.

03
0.

18
0.

24
0.

12
51

.1
2

53
.3

4
st

ei
n4

5
12

17
9

0.
00

0.
00

0.
65

3.
66

3.
43

1.
22

20
71

.9
4

21
02

.3
0

bi
en

st
1

97
21

0.
00

0.
00

0.
79

0.
21

0.
18

0.
24

18
01

.0
6

18
24

.5
6

p0
28

2
61

3
0.

00
0.

00
0.

01
0.

11
0.

06
0.

06
29

.3
7

30
.1

0
1

N
P

95
35

2
0.

00
0.

00
4.

84
20

.7
4

8.
91

11
.0

3
77

81
.4

1
80

83
.2

8
1.

00
P
er

N
od

e
0.

00
00

0.
00

00
0.

00
01

0.
00

02
0.

00
01

0.
00

01
0.

08
16

0.
08

48
2

N
P

s
96

56
9

19
.9

5
0.

00
3.

99
15

.8
8

8.
29

10
.2

3
80

11
.4

5
41

27
.7

6
0.

98
P
er

N
od

e
0.

00
02

0.
00

00
0.

00
00

0.
00

02
0.

00
01

0.
00

01
0.

08
30

0.
08

55
4

N
P

s
96

00
6

72
.3

9
0.

00
4.

11
21

.7
9

9.
75

11
.7

4
77

94
.8

6
22

12
.5

4
0.

91
P
er

N
od

e
0.

00
08

0.
00

00
0.

00
00

0.
00

02
0.

00
01

0.
00

01
0.

08
12

0.
09

22
8

N
P

s
97

10
4

18
9.

71
1.

35
3.

99
23

.2
4

10
.1

9
12

.3
8

77
52

.6
3

11
73

.9
6

0.
86

P
er

N
od

e
0.

00
20

0.
00

00
0.

00
00

0.
00

02
0.

00
01

0.
00

01
0.

07
98

0.
09

67
16

N
P

s
98

96
0

47
0.

38
18

.9
1

4.
37

27
.6

1
11

.3
5

13
.6

7
79

53
.2

0
63

8.
36

0.
79

P
er

N
od

e
0.

00
48

0.
00

02
0.

00
00

0.
00

03
0.

00
01

0.
00

01
0.

08
04

0.
10

32
32

N
P

s
98

22
3

10
80

.3
3

30
1.

06
4.

86
70

.3
1

15
.1

8
25

.3
8

77
93

.9
2

34
9.

24
0.

72
P
er

N
od

e
0.

01
10

0.
00

31
0.

00
00

0.
00

07
0.

00
02

0.
00

03
0.

07
93

0.
11

38

T
ab

le
3:

P
ro

vi
ng

op
ti

m
al

it
y

of
ge

ne
ri

c
M

IL
P

s
w

it
h

SY
M

P
H

O
N

Y
(u

nc
on

di
ti

on
al

di
vi

ng
)

36

N
P

s
T
re

e
Si

ze
R

am
p

U
p

R
am

p
D

ow
n

N
od

e
P
ac

k
Id

le
N

od
e

Id
le

In
de

x
Id

le
D

iv
e

C
P

U
se

c
W

al
lc

lo
ck

E
ff

1
23

93
13

0.
00

0.
00

25
8.

20
27

9.
60

16
.2

0
37

8.
15

37
75

.5
2

45
33

.7
0

1.
00

2
23

94
61

0.
01

0.
36

25
6.

94
30

2.
26

28
.2

4
40

4.
23

37
76

.7
6

22
96

.4
8

0.
99

4
23

86
33

0.
05

13
.2

4
24

0.
17

35
8.

89
54

.9
0

43
1.

11
37

51
.3

1
11

70
.6

2
0.

97
8

23
85

88
0.

19
19

7.
95

23
6.

39
93

0.
87

16
3.

85
65

2.
97

37
47

.7
7

69
7.

49
0.

81
16

24
02

38
0.

58
96

6.
25

24
8.

13
34

29
.1

0
78

2.
94

19
33

.3
2

37
98

.9
1

62
6.

75
0.

45
32

23
87

95
1.

53
28

81
.8

7
23

1.
07

87
25

.3
2

16
81

.3
8

37
01

.6
1

37
61

.6
1

56
1.

19
0.

25

T
ab

le
4:

Sc
al

ab
ili

ty
of

p
k
1

w
it

h
SY

M
P

H
O

N
Y

(u
nc

on
di

ti
on

al
di

vi
ng

)

37

N
P

s
T
re

e
Si

ze
R

am
p

U
p

R
am

p
D

ow
n

N
od

e
P
ac

k
Id

le
N

od
e

Id
le

In
de

x
Id

le
D

iv
e

C
P

U
se

c
W

al
lc

lo
ck

E
ff

1
35

3
0.

00
0.

00
0.

17
1.

02
0.

04
0.

05
10

0.
41

13
0.

37
1.

00
2

61
9

0.
42

0.
00

0.
28

1.
66

0.
07

0.
11

16
1.

51
84

.2
9

0.
77

4
11

24
4

1.
65

0.
00

6.
76

28
.1

3
0.

97
2.

08
21

95
.4

1
57

1.
95

0.
05

8
19

50
2

2.
93

0.
03

14
.5

1
57

.6
7

1.
35

3.
95

39
06

.4
1

50
7.

37
0.

03

T
ab

le
5:

Sc
al

ab
ili

ty
of

p
2
7
5
6

w
it

h
SY

M
P

H
O

N
Y

(d
ef

au
lt

se
tt

in
gs

)

38

N
P

s
T
re

e
Si

ze
R

am
p

U
p

R
am

p
D

ow
n

N
od

e
P
ac

k
Id

le
N

od
e

Id
le

In
de

x
Id

le
D

iv
e

C
P

U
se

c
W

al
lc

lo
ck

E
ff

1
19

8
0.

00
0.

00
1.

28
4.

94
0.

00
0.

04
10

75
.7

6
11

38
.3

8
1.

00
2

85
27

.2
9

0.
00

0.
33

1.
21

0.
00

0.
02

43
9.

92
24

6.
35

2.
32

4
84

10
1.

21
61

.6
5

0.
17

10
7.

40
0.

00
0.

01
46

3.
87

18
1.

29
1.

58
8

87
94

1.
67

0.
00

0.
20

22
0.

33
0.

00
0.

02
47

3.
78

18
1.

56
0.

78
16

86
22

83
.0

4
0.

00
0.

17
22

5.
41

0.
00

0.
02

46
8.

53
18

2.
60

0.
39

32
87

49
54

.9
2

0.
00

0.
20

22
0.

20
0.

06
0.

06
47

4.
64

18
5.

75
0.

19

T
ab

le
6:

Sc
al

ab
ili

ty
of

n
w
0
4

w
it

h
SY

M
P

H
O

N
Y

(d
ef

au
lt

se
tt

in
gs

)

39

In
st

an
ce

T
re

e
Si

ze
R

am
p

U
p

R
am

p
D

ow
n

N
od

e
P
ac

k
Id

le
N

od
e

Id
le

In
de

x
Id

le
D

iv
in

g
C

P
U

se
c

W
al

lc
lo

ck
E

ff
hk

48
−

n4
8
−

k4
11

0
0.

00
0.

00
0.

00
0.

03
0.

01
0.

01
16

.7
7

17
.3

5
at

t
−

n4
8
−

k4
38

4
0.

00
0.

00
0.

01
0.

05
0.

04
0.

05
36

.6
1

37
.7

7
E
−

n5
1
−

k5
41

0.
00

0.
00

0.
00

0.
01

0.
01

0.
01

14
.8

6
15

.4
9

A
−

n3
9
−

k5
13

07
0.

00
0.

00
0.

04
0.

23
0.

18
0.

15
24

2.
33

25
1.

04
A
−

n3
9
−

k6
32

8
0.

00
0.

00
0.

01
0.

07
0.

04
0.

03
31

.9
5

32
.6

6
A
−

n4
5
−

k6
63

1
0.

00
0.

00
0.

02
0.

13
0.

08
0.

07
17

5.
12

18
1.

64
A
−

n4
6
−

k7
43

0.
00

0.
00

0.
00

0.
01

0.
01

0.
00

15
.0

3
15

.7
1

B
−

n3
4
−

k5
79

5
0.

00
0.

00
0.

01
0.

10
0.

08
0.

09
29

.9
9

31
.0

8
B
−

n4
3
−

k6
28

8
0.

00
0.

00
0.

01
0.

05
0.

04
0.

03
38

.2
4

39
.6

7
B
−

n4
5
−

k5
13

3
0.

00
0.

00
0.

00
0.

02
0.

02
0.

02
15

.6
9

16
.2

1
B
−

n5
1
−

k7
36

7
0.

00
0.

00
0.

01
0.

12
0.

05
0.

05
53

.5
0

55
.3

7
B
−

n6
4
−

k9
15

2
0.

00
0.

00
0.

00
0.

03
0.

02
0.

02
44

.0
0

46
.1

2
A
−

n5
3
−

k7
30

56
0.

00
0.

00
0.

17
1.

16
0.

39
0.

33
12

95
.0

6
13

62
.3

3
A
−

n3
7
−

k6
58

73
0.

00
0.

00
0.

21
1.

36
0.

73
0.

67
83

2.
46

85
7.

40
A
−

n4
4
−

k6
59

63
0.

00
0.

00
0.

31
1.

95
0.

80
0.

67
16

77
.4

4
17

41
.7

8
B
−

n4
5
−

k6
20

39
0.

00
0.

00
0.

07
0.

46
0.

28
0.

23
37

9.
23

39
4.

49
B
−

n5
7
−

k7
32

05
0.

00
0.

00
0.

17
1.

11
0.

42
0.

41
97

6.
52

10
36

.0
9

1
N

P
24

71
5

0.
00

0.
00

1.
03

6.
89

3.
20

2.
86

58
74

.8
0

61
32

.2
2

1.
00

P
er

N
od

e
0.

00
00

0.
00

00
0.

00
00

0.
00

03
0.

00
01

0.
00

01
0.

23
77

0.
24

81
2

N
P
′ s

24
68

0
19

.4
8

0.
00

1.
01

6.
65

3.
18

2.
91

58
32

.2
5

30
54

.9
9

1.
01

P
er

N
od

e
0.

00
08

0.
00

00
0.

00
00

0.
00

03
0.

00
01

0.
00

01
0.

23
63

0.
24

76
4

N
P
′ s

23
93

0
74

.7
7

0.
00

0.
96

7.
03

3.
05

2.
73

56
20

.9
4

14
88

.7
4

1.
03

P
er

N
od

e
0.

00
31

0.
00

00
0.

00
00

0.
00

03
0.

00
01

0.
00

01
0.

23
49

0.
24

88
8

N
P
′ s

24
36

6
22

1.
67

3.
56

0.
97

8.
41

3.
36

3.
00

57
01

.0
0

77
4.

99
0.

99
P
er

N
od

e
0.

00
91

0.
00

01
0.

00
00

0.
00

03
0.

00
01

0.
00

01
0.

23
40

0.
25

44
16

N
P
′ s

25
66

8
57

2.
93

11
.8

3
0.

98
11

.5
2

3.
75

3.
51

60
90

.3
7

43
7.

66
0.

87
P
er

N
od

e
0.

02
23

0.
00

05
0.

00
00

0.
00

04
0.

00
01

0.
00

01
0.

23
73

0.
27

28
32

N
P
′ s

25
51

6
14

16
.5

5
60

.9
8

3.
02

11
3.

66
12

1.
30

11
0.

45
59

98
.9

3
25

7.
71

0.
74

P
er

N
od

e
0.

05
55

0.
00

24
0.

00
01

0.
00

45
0.

00
48

0.
00

43
0.

23
51

0.
32

32

T
ab

le
7:

So
lv

in
g

V
R

P
in

st
an

ce
s

w
it

h
SY

M
P

H
O

N
Y

:
D

ef
au

lt
se

tt
in

gs
an

d
he

ur
is

ti
c

up
pe

r
bo

un
d

(s
um

m
ar

y)

40

In
st

an
ce

T
re

e
Si

ze
R

am
p

U
p

R
am

p
D

ow
n

N
od

e
P
ac

k
Id

le
N

od
e

Id
le

In
de

x
Id

le
D

iv
in

g
C

P
U

se
c

W
al

lc
lo

ck
hk

48
−

n4
8
−

k4
17

8
59

.1
1

2.
78

0.
01

0.
46

1.
20

0.
91

26
.1

1
3.

06
at

t
−

n4
8
−

k4
34

9
34

.0
3

0.
04

0.
01

0.
75

1.
51

1.
29

32
.4

5
2.

53
E
−

n5
1
−

k5
37

74
.1

1
0.

00
0.

00
0.

05
0.

05
0.

06
13

.8
2

3.
24

A
−

n3
9
−

k5
12

28
99

.8
6

0.
04

0.
06

4.
11

6.
57

5.
99

23
2.

97
11

.3
6

A
−

n3
9
−

k6
32

8
35

.5
2

9.
34

0.
01

0.
99

1.
23

0.
98

32
.0

2
2.

75
A
−

n4
5
−

k6
72

7
10

5.
07

0.
08

0.
06

2.
71

3.
38

2.
64

21
5.

34
10

.9
6

A
−

n4
6
−

k7
36

15
7.

81
0.

00
0.

00
1.

19
0.

04
0.

03
13

.9
3

5.
53

B
−

n3
4
−

k5
85

9
10

.7
7

0.
01

0.
02

1.
34

1.
69

2.
34

32
.3

6
1.

68
B
−

n4
3
−

k6
29

6
65

.7
3

6.
82

0.
02

3.
32

1.
16

0.
94

37
.5

0
3.

68
B
−

n4
5
−

k5
17

9
72

. 2
3

7.
21

0.
01

1.
75

0.
50

0.
48

20
. 8

2
3.

72
B
−

n5
1
−

k7
36

5
41

.0
1

12
.0

7
0.

02
2.

05
1.

66
1.

39
52

.8
4

3.
79

B
−

n6
4
−

k9
13

6
15

8.
05

0.
00

0.
04

3.
51

0.
85

0.
70

36
.1

1
6.

59
A
−

n5
3
−

k7
30

12
17

8.
18

0.
53

0.
45

14
.8

7
12

.6
1

11
.5

2
12

78
.1

0
49

.2
2

A
−

n3
7
−

k6
59

99
54

.7
8

12
.9

6
0.

51
23

.6
0

27
.9

9
24

.6
2

84
9.

45
32

.0
3

A
−

n4
4
−

k6
59

16
11

5.
84

1.
03

0.
79

28
.9

9
30

.2
9

27
.2

0
16

67
.7

3
60

.7
8

B
−

n4
5
−

k6
19

91
74

.9
3

0.
32

0.
26

8.
53

11
.1

6
9.

86
37

2.
13

16
.0

8
B
−

n5
7
−

k7
38

77
79

.5
1

7.
76

0.
73

15
.4

4
19

.4
0

19
.4

9
10

85
.2

4
40

.7
3

32
N

P
′ s

25
51

6
14

16
.5

5
60

.9
8

3.
02

11
3.

66
12

1.
30

11
0.

45
59

98
.9

3
25

7.
71

P
er

N
od

e
0.

05
55

0.
00

24
0.

00
01

0.
00

45
0.

00
48

0.
00

43
0.

23
51

0.
32

32

T
ab

le
8:

So
lv

in
g

V
R

P
in

st
an

ce
s

w
it

h
SY

M
P

H
O

N
Y

:
D

ef
au

lt
se

tt
in

gs
an

d
he

ur
is

ti
c

up
pe

r
bo

un
d

(3
2

N
P

s)

41

In
st

an
ce

T
re

e
Si

ze
R

am
p

U
p

R
am

p
D

ow
n

N
od

e
P
ac

k
Id

le
N

od
e

Id
le

In
de

x
Id

le
D

iv
in

g
C

P
U

se
c

W
al

lc
lo

ck
E

ff
hk

48
−

n4
8
−

k4
11

0
0.

00
0.

00
0.

00
0.

02
0.

01
0.

01
17

.8
8

18
.4

6
at

t
−

n4
8
−

k4
29

2
0.

00
0.

00
0.

00
0.

05
0.

03
0.

04
29

.3
7

30
.3

4
E
−

n5
1
−

k5
38

0.
00

0.
00

0.
00

0.
01

0.
01

0.
00

13
.2

9
13

.8
8

A
−

n3
9
−

k5
11

39
0.

00
0.

00
0.

03
0.

13
0.

14
0.

12
21

8.
66

22
6.

46
A
−

n3
9
−

k6
27

3
0.

00
0.

00
0.

00
0.

04
0.

03
0.

03
26

.8
8

27
.5

3
A
−

n4
5
−

k6
80

7
0.

00
0.

00
0.

02
0.

14
0.

13
0.

10
24

7.
97

25
7.

05
A
−

n4
6
−

k7
83

0.
00

0.
00

0.
00

0.
01

0.
02

0.
01

45
.0

1
47

.5
1

B
−

n3
4
−

k5
11

01
0.

00
0.

00
0.

02
0.

10
0.

10
0.

11
41

.6
6

43
.1

5
B
−

n4
3
−

k6
19

7
0.

00
0.

00
0.

01
0.

04
0.

03
0.

02
27

.5
2

28
.5

4
B
−

n4
5
−

k5
12

6
0.

00
0.

00
0.

00
0.

02
0.

02
0.

02
17

.9
2

18
.4

8
B
−

n5
1
−

k7
32

7
0.

00
0.

00
0.

01
0.

09
0.

05
0.

05
47

.0
1

48
.7

5
B
−

n6
4
−

k9
13

7
0.

00
0.

00
0.

01
0.

03
0.

02
0.

02
39

.4
1

40
.8

3
A
−

n5
3
−

k7
16

82
0.

00
0.

00
0.

08
0.

63
0.

21
0.

17
69

8.
52

73
5.

62
A
−

n4
4
−

k6
52

33
0.

00
0.

00
0.

20
1.

13
0.

79
0.

73
14

71
.4

7
15

23
.4

0
B
−

n4
5
−

k6
54

13
0.

00
0.

00
0.

18
0.

95
0.

82
0.

81
11

15
.4

3
11

57
.2

6
1

N
P

16
95

8
0.

00
0.

00
0.

56
3.

40
2.

40
2.

26
40

58
.0

0
42

17
.2

6
1.

00
P
er

N
od

e
0.

00
00

0.
00

00
0.

00
00

0.
00

02
0.

00
01

0.
00

01
0.

23
93

0.
24

87
2

N
P
′ s

16
91

8
16

.6
1

0.
00

0.
55

3.
73

2.
54

2.
36

40
51

.7
9

21
15

.6
8

1.
00

P
er

N
od

e
0.

00
10

0.
00

00
0.

00
00

0.
00

02
0.

00
01

0.
00

01
0.

23
95

0.
25

01
4

N
P
′ s

16
93

3
68

.5
4

0.
00

0.
54

4.
02

2.
41

2.
25

40
30

.2
9

10
66

.6
3

0.
99

P
er

N
od

e
0.

00
40

0.
00

00
0.

00
00

0.
00

02
0.

00
01

0.
00

01
0.

23
80

0.
25

20
8

N
P
′ s

16
89

1
19

9.
20

1.
02

0.
54

4.
27

2.
56

2.
40

40
31

.2
1

55
1.

15
0.

96
P
er

N
od

e
0.

01
18

0.
00

01
0.

00
00

0.
00

03
0.

00
02

0.
00

01
0.

23
87

0.
26

10
16

N
P
′ s

18
71

5
51

3.
93

29
.9

5
0.

58
7.

29
2.

97
2.

84
45

20
.3

6
33

0.
86

0.
80

P
er

N
od

e
0.

02
75

0.
00

16
0.

00
00

0.
00

04
0.

00
02

0.
00

02
0.

24
15

0.
28

29
32

N
P
′ s

16
16

0
12

49
.3

1
75

.5
2

1.
42

60
.4

4
81

.9
7

78
.3

7
37

81
.3

0
17

6.
54

0.
75

P
er

N
od

e
0.

07
73

0.
00

47
0.

00
01

0.
00

37
0.

00
51

0.
00

48
0.

23
40

0.
34

96

T
ab

le
9:

So
lv

in
g

V
R

P
in

st
an

ce
s

w
it

h
SY

M
P

H
O

N
Y

:
D

ef
au

lt
se

tt
in

gs
an

d
no

a
pr

io
ri

up
pe

r
bo

un
d

(s
um

m
ar

y)

42

In
st

an
ce

T
re

e
Si

ze
R

am
p

U
p

R
am

p
D

ow
n

N
od

e
P
ac

k
Id

le
N

od
e

Id
le

C
ut

s
Id

le
In

de
x

Id
le

D
iv

in
g

C
P

U
se

c
W

al
lc

lo
ck

E
ff

hk
48
−

n4
8
−

k4
10

1
0.

00
0.

00
0.

00
0.

02
0.

04
0.

01
0.

01
16

.5
6

17
.2

5
at

t
−

n4
8
−

k4
38

4
0.

00
0.

00
0.

01
0.

07
0.

13
0.

06
0.

05
37

.7
6

39
.1

1
E
−

n5
1
−

k5
53

0.
00

0.
00

0.
00

0.
01

0.
09

0.
01

0.
01

18
.6

4
19

.4
6

A
−

n3
9
−

k5
39

0
0.

00
0.

00
0.

01
0.

07
0.

58
0.

07
0.

04
74

.3
6

77
.2

2
A
−

n3
9
−

k6
31

5
0.

00
0.

00
0.

01
0.

05
0.

15
0.

05
0.

03
29

.7
0

30
.4

8
A
−

n4
5
−

k6
85

1
0.

00
0.

00
0.

02
0.

15
1.

22
0.

15
0.

10
23

6.
26

24
4.

64
A
−

n4
6
−

k7
24

0.
00

0.
00

0.
00

0.
01

0.
08

0.
00

0.
00

12
.9

0
13

.6
4

B
−

n3
4
−

k5
10

32
0.

00
0.

00
0.

02
0.

15
0.

45
0.

14
0.

11
36

.9
2

38
.6

1
B
−

n4
3
−

k6
74

6
0.

00
0.

00
0.

02
0.

14
0.

42
0.

12
0.

08
80

.0
8

83
.1

7
B
−

n4
5
−

k5
45

0.
00

0.
00

0.
00

0.
01

0.
02

0.
01

0.
01

8.
27

8.
59

B
−

n5
1
−

k7
89

7
0.

00
0.

00
0.

03
0.

23
0.

47
0.

14
0.

10
12

5.
30

13
0.

27
B
−

n6
4
−

k9
99

0.
00

0.
00

0.
00

0.
04

0.
05

0.
02

0.
01

23
.9

3
24

.9
0

A
−

n5
3
−

k7
13

58
0.

00
0.

00
0.

06
0.

50
4.

21
0.

21
0.

14
51

5.
92

53
9.

48
A
−

n3
7
−

k6
51

15
0.

00
0.

00
0.

18
1.

16
4.

11
0.

86
0.

59
72

1.
11

74
1.

37
A
−

n4
4
−

k6
36

33
0.

00
0.

00
0.

14
1.

09
4.

97
0.

59
0.

39
88

9.
40

92
0.

67
B
−

n4
5
−

k6
38

29
0.

00
0.

00
0.

13
0.

86
2.

90
0.

71
0.

48
73

4.
27

76
0.

16
B
−

n5
7
−

k7
23

45
0.

00
0.

00
0.

09
0.

65
1.

94
0.

35
0.

32
50

8.
84

53
6.

20
1

N
P

21
21

7
0.

00
0.

00
0.

70
5.

22
21

.8
2

3.
49

2.
48

40
70

.2
1

42
25

.2
1

1.
00

P
er

N
od

e
0.

00
00

0.
00

00
0.

00
00

0.
00

02
0.

00
10

0.
00

02
0.

00
01

0.
19

18
0.

19
91

2
N

P
′ s

23
44

6
19

.2
8

0.
00

0.
75

5.
28

23
.8

0
3.

72
2.

81
46

22
.3

5
24

11
.4

0
0.

87
P
er

N
od

e
0.

00
08

0.
00

00
0.

00
00

0.
00

02
0.

00
10

0.
00

02
0.

00
01

0.
19

71
0.

20
57

4
N

P
′ s

23
42

4
74

.9
6

2.
18

0.
77

6.
83

26
.2

0
3.

79
2.

69
46

11
.4

7
12

17
.9

6
0.

86
P
er

N
od

e
0.

00
32

0.
00

01
0.

00
00

0.
00

03
0.

00
11

0.
00

02
0.

00
01

0.
19

69
0.

20
80

8
N

P
′ s

22
06

2
23

3.
71

3.
17

0.
70

8.
36

26
.2

1
3.

74
2.

64
44

63
.3

0
61

1.
69

0.
86

P
er

N
od

e
0.

01
06

0.
00

01
0.

00
00

0.
00

04
0.

00
12

0.
00

02
0.

00
01

0.
20

23
0.

22
18

16
N

P
′ s

22
75

6
59

7.
00

31
.3

0
0.

71
10

.5
9

30
.2

0
4.

17
3.

08
46

26
.4

6
34

3.
32

0.
76

P
er

N
od

e
0.

02
62

0.
00

14
0.

00
00

0.
00

05
0.

00
13

0.
00

02
0.

00
01

0.
20

33
0.

24
14

32
N

P
′ s

24
66

9
14

55
.5

1
29

.8
8

2.
27

93
.7

0
71

.2
2

11
2.

91
11

0.
86

51
08

.7
5

22
9.

53
0.

75
P
er

N
od

e
0.

05
90

0.
00

12
0.

00
01

0.
00

38
0.

00
29

0.
00

46
0.

00
45

0.
20

71
0.

29
77

T
ab

le
10

:
So

lv
in

g
V

R
P

in
st

an
ce

s
w

it
h

SY
M

P
H

O
N

Y
:
D

ef
au

lt
se

tt
in

gs
w

it
h

he
ur

is
ti

c
up

pe
r

bo
un

ds
an

d
gl

ob
al

cu
t

po
ol

(s
um

m
ar

y)

43

In
st

an
ce

T
re

e
Si

ze
R

am
p

U
p

R
am

p
D

ow
n

N
od

e
P
ac

k
Id

le
N

od
e

Id
le

In
de

x
Id

le
D

iv
e

C
P

U
se

c
W

al
lc

lo
ck

E
ff

aa
01

75
8

0.
00

0.
00

0.
63

7.
03

0.
10

0.
09

23
62

6.
58

24
21

6.
30

aa
04

11
53

0.
00

0.
00

0.
48

6.
21

0.
10

0.
15

12
74

6.
12

13
06

3.
71

kl
02

18
4

0.
00

0.
00

0.
25

2.
58

0.
01

0.
03

12
55

.8
3

14
08

.3
5

v0
41

5
19

1
0.

00
0.

00
0.

06
0.

49
0.

03
0.

03
94

.3
9

14
0.

57
v1

62
2

20
0

0.
00

0.
00

0.
09

0.
79

0.
01

0.
02

14
3.

06
21

5.
30

1
N

P
24

86
0.

00
0.

00
1.

51
17

.1
1

0.
24

0.
32

37
86

5.
98

39
04

4.
22

1.
00

P
er

N
od

e
0.

00
00

0.
00

00
0.

00
06

0.
00

69
0.

00
01

0.
00

01
15

.2
31

7
15

.7
05

6
2

N
P

s
21

59
41

9.
68

0.
00

1.
32

13
.6

7
0.

21
0.

27
31

93
2.

62
16

80
9.

16
1.

16
P
er

N
od

e
0.

19
44

0.
00

00
0.

00
06

0.
00

63
0.

00
01

0.
00

01
14

.7
90

5
15

.5
71

2
4

N
P

s
20

97
15

75
.8

2
0.

00
1.

23
10

.3
2

0.
17

0.
25

29
66

7.
74

81
98

.4
6

1.
20

P
er

N
od

e
0.

75
15

0.
00

00
0.

00
06

0.
00

49
0.

00
01

0.
00

01
14

.1
47

7
15

.6
38

5
8

N
P

s
26

01
45

24
.9

3
10

87
.8

1
1.

48
77

3.
35

0.
23

0.
42

37
86

8.
39

57
24

.0
6

0.
85

P
er

N
od

e
1.

73
97

0.
41

82
0.

00
06

0.
29

73
0.

00
01

0.
00

02
14

.5
59

2
17

.6
05

7
16

N
P

s
24

78
11

36
8.

97
81

25
.8

7
1.

87
16

26
.5

2
0.

26
0.

71
35

60
3.

94
37

02
.5

9
0.

66
P
er

N
od

e
4.

58
80

3.
27

92
0.

00
08

0.
65

64
0.

00
01

0.
00

03
14

.3
68

0
23

.9
07

0
32

N
P

s
19

71
30

14
4.

80
34

07
2.

61
1.

27
33

28
.5

7
0.

18
0.

59
28

66
0.

28
31

42
.5

9
0.

38
P
er

N
od

e
15

.2
90

3
17

.2
82

6
0.

00
06

1.
68

83
0.

00
01

0.
00

03
14

.5
37

3
51

.0
08

3

T
ab

le
11

:
So

lv
in

g
SP

P
in

st
an

ce
s

w
it

h
SY

M
P

H
O

N
Y

:
D

ef
au

lt
se

tt
in

gs
an

d
no

a
pr

io
ri

up
pe

r
bo

un
d

(s
um

m
ar

y)

44

In
st

an
ce

T
re

e
Si

ze
R

am
p

U
p

R
am

p
D

ow
n

N
od

e
P
ac

k
Id

le
N

od
e

Id
le

In
de

x
Id

le
D

iv
e

C
P

U
se

c
W

al
lc

lo
ck

aa
01

56
6

18
19

1.
06

31
06

9.
37

0.
51

29
10

.0
2

0.
08

0.
21

16
52

5.
35

22
08

.6
5

aa
04

10
44

71
74

.2
7

30
03

.2
4

0.
44

74
.2

2
0.

08
0.

16
11

11
9.

85
72

2.
99

kl
02

14
3

41
18

.3
1

0.
00

0.
23

20
8.

02
0.

01
0.

11
86

5.
38

18
1.

49
v0

41
5

21
8

66
1.

16
0.

00
0.

10
13

6.
31

0.
02

0.
10

14
9.

71
29

.4
6

v1
62

2
22

2
48

7.
67

0.
00

0.
12

11
.2

9
0.

00
0.

08
17

3.
08

24
.6

1
32

N
P

s
19

71
30

14
4.

80
34

07
2.

61
1.

27
33

28
.5

7
0.

18
0.

59
28

66
0.

28
31

42
.5

9
P
er

N
od

e
15

.2
90

3
17

.2
82

6
0.

00
06

1.
68

83
0.

00
01

0.
00

03
14

.5
37

3
51

.0
08

3

T
ab

le
12

:
So

lv
in

g
SP

P
in

st
an

ce
s

w
it

h
SY

M
P

H
O

N
Y

:
D

ef
au

lt
se

tt
in

gs
an

d
no

a
pr

io
ri

up
pe

r
bo

un
d

(3
2

N
P

s)

45

References

[1] T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations Research
Letters, 33:42–54, 2004.

[2] G.M. Amdahl. Validity of the single-processor approach to achieving large-scale com-
puting capabilities. In AFIPS Conference Proceedings, pages 483–485. AFIPS Press,
1967.

[3] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. CONCORDE TSP solver.
http://www.tsp.gatech.edu/concorde.html.

[4] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. On the solution of traveling
salesman problems. Documenta Mathematica, Extra Volume Proceedings ICM III
(1998):645–656, 1998.

[5] M. Benchouche, V.-D. Cung, S. Dowaji, B. Le Cun, T. Mautor, and C. Roucairol.
Building a parallel branch and bound library. In in Solving Combinatorial Optimization
Problems in Parallel, Lecture Notes in Computer Science 1054, page 201. Springer,
Berlin, 1996.

[6] M. Bénichou, J. M. Gauthier, P. Girodet, G. Hentges, G. Ribière, and O. Vincent.
Experiments in mixed-integer linear programming. Mathematical Programming, 1:76–
94, 1971.

[7] M. Berkelaar. lp solve 5.1, 2004. Available from http://groups.yahoo.com/group/
lp_solve/.

[8] R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. P. Savelsbergh. An updated mixed
integer programming library: MIPLIB 3.0. Optima, 58:12–15, 1998.

[9] B. Borbeau, T.G. Crainic, and B. Gendron. Branch-and-bound parallelization strate-
gies applied to a depot location and container fleet management problem. Parallel
Computing, 26:27–46, 2000.

[10] R.G. Brown. Engineering a beowulf-style compute cluster. Available from http:
//www.phy.duke.edu/~rgb/Beowulf/beowulf_book/beowulf_book/, 2004.

[11] Q. Chen and M. Ferris. Fatcop: A fault tolerant condor-pvm mixed integer program-
ming solver. SIAM Journal on Optimization, 11(4):1019–1036, 2001.

[12] COIN-OR: Computational Infrastructure for Operations Research, 2004. http://www.
coin-or.org.

[13] M. Cosnard and D. Trystram. Parallel Algorithms and Arcitectures. International
Thomson Computer Press, Boston, MA, USA, 1995.

[14] G.B. Danzig and R.H. Ramser. The truck dispatching problem. Management Science,
6:80–91, 1959.

[15] A. de Bruin, G. A. P. Kindervater, and H. W. J. M. Trienekens. Asynchronous par-
allel branch and bound and anomolies. Report EUR-CS-95-05, Erasmus University,
Rotterdam, 1995.

46

[16] J. Eckstein, C.A. Phillips, and W.E. Hart. PICO: An object-oriented framework for
parallel branch and bound. Technical Report RRR 40-2000, Rutgers University, 2000.

[17] M. Esö. Parallel Branch and Cut for Set Partitioning. PhD thesis, Department of
Operations Research and Industrial Engineering, Cornell University, 1999.

[18] M. Esö and T.K. Ralphs. Symphony set partitioning problem solver.

[19] C. Fonlupt, P. Marquet, and J. Dekeyser. Data-parallel load balancing strategies.
Parallel Computing, 24(11):1665–1684, 1998.

[20] J. Forrest. CBC, 2004. Available from http://www.coin-or.org/.

[21] J. J. H. Forrest, J. P. H. Hirst, and J. A. Tomlin. Practical solution of large scale
mixed integer programming pr oblems with UMPIRE. Management Science, 20:736–
773, 1974.

[22] J. J. H. Forrest, J. P. H. Hirst, and J. A. Tomlin. Practical solution of large scale mixed
integer programming problems with UMPIRE. Management Science, 20:736–773, 1974.

[23] J. M. Gauthier and G. Ribière. Experiments in mixed-integer linear programming
using pseudocosts. Mathematical Programming, 12:26–47, 1977.

[24] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM:
Parallel Virtual Machine. The MIT Press, Cambridge, MA, 1994.

[25] B. Gendron and T. G. Crainic. Parallel branch and bound algorithms: Survey and
synthesis. Operations Research, 42:1042–1066, 1994.

[26] A.Y. Grama and V. Kumar. Parallel search algorithms for discrete optimization prob-
lems. ORSA Journal on Computing, 7:365–385, 1995.

[27] W. Gropp, E. Lusk, and A. Skjellum. Using MPI. MIT Press, Cambridge, MA, USA,
2nd edition, 1999.

[28] Grötschel, M. and Lovász, L. and Schrijver, A. The ellipsoid method and its conse-
quences in combinatorial optimization. Combinatorica, 1:169–197, 1981.

[29] J. L. Gustafson. Reevaluating Amdahl’s Law. Commications of the ACM, 31:532–533,
1988.

[30] L. Hafer. bonsaiG 2.8, 2004. Available from http://www.cs.sfu.ca/~lou/BonsaiG/
dwnldreq.html.

[31] D. Henrich. Initialization of parallel branch-and-bound algorithms. In Second Interna-
tional Workshop on Parallel Processing for Artificial Intelligence(PPAI-93), August,
1993.

[32] M. Jünger and S. Thienel. The ABACUS system for branch and cut and price algo-
rithms in integer programming and combinatorial optimization. Software Practice and
Experience, 30:1325–1352, 2001.

[33] V. Kumar, A.Y. Grama, and Nageshwara Rao Vempaty. Scalable load balancing tech-
niques for parallel computers. Journal of Parallel and Distributed Computing, 22(1):60–
79, 1994.

47

[34] V. Kumar and A. Gupta. Analyzing scalability of parallel algorithms and architectures.
Journal of Parallel and Distributed Computing, 22:379–391, September 1994.

[35] V. Kumar and V. N. Rao. Parallel depth-first search, part II: Analysis. International
Journal of Parallel Programming, 16:501–519, 1987.

[36] L. Ladányi. Parallel Branch and Cut and Its Application to the Traveling Salesman
Problem. PhD thesis, Cornell University, May 1996.

[37] T.H. Lai and S. Sahni. Anomalies in parallel branch and bound algorithms. In Pro-
ceedings of the 1983 International Conference on Parallel Processing, pages 183–190,
1983.

[38] A. H. Land and A. G. Doig. An automatic method for solving discrete programming
problems. Econometrica, 28:497–520, 1960.

[39] P.S. Laursen. Can parallel branch and bound without communication be effective?
SIAM Journal on Optimization, 4:33–33, May, 1994.

[40] J. Linderoth. Topics in Parallel Integer Optimization. PhD thesis, School of Industrial
and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 1998.

[41] J. T. Linderoth. Topics in Parallel Integer Optimization. PhD thesis, Georgia Institute
of Technology, 1998.

[42] J. T. Linderoth and M. W. P. Savelsbergh. A computational study of search strategies
in mixed integer programming. INFORMS Journal on Computing, 11:173–187, 1999.

[43] J.T. Linderoth. MIP instances, 2004. Available from http://coral.ie.lehigh.edu/
mip-instances.

[44] A. Makhorin. GLPK 4.2, 2004. Available from http://www.gnu.org/software/glpk/
glpk.html.

[45] A. Martin, T. Achterberg, and T. Koch. MIPLIB 2003. Avaiable from http://miplib.
zib.de.

[46] G. Mitra. Investigation of some branch and bound strategies for the solution of mixed
integer linear programs. Mathematical Programming, 4:155–170, 1973.

[47] L.G. Mitten. Branch-and-bound methods: General formulation and properties. Oper-
ations Research, 18:24–34, 1970.

[48] G.L. Nemhauser, M.W.P. Savelsbergh, and G.S. Sigismondi. MINTO, a Mixed INTeger
Optimizer. Operations Research Letters, 15:47–58, 1994.

[49] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley,
New York, 1988.

[50] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. John
Wiley & Sons, Inc., USA, 1st edition, 1988.

[51] M. Padberg and G. Rinaldi. A Branch-and-Cut Algorithm for the Resolution of Large-
Scale Traveling Salesman Problems. SIAM Review, 33:60+, 1991.

48

[52] T. K. Ralphs. SYMPHONY Version 5.0 user’s manual. Technical Report 04T-011,
Lehigh University Industrial and Systems Engineering, 2004.

[53] T.K. Ralphs. Library of vehicle routing problem instances.

[54] T.K. Ralphs. Symphony vehicle routing problem solver.

[55] T.K. Ralphs. Parallel Branch and Cut for Vehicle Routing. PhD thesis, Cornell Uni-
versity, 1995.

[56] T.K. Ralphs. Parallel branch and cut for capacitated vehicle routing. Parallel Com-
puting, 29:607–629, 2003.

[57] T.K. Ralphs. SYMPHONY Version 4.0 User’s Manual. Technical Report 03T-006,
Lehigh University Industrial and Systems Engineering, 2003.

[58] T.K. Ralphs. SYMPHONY 5.0, 2004. Available from http://www.branchandcut.
org/SYMPHONY/.

[59] T.K. Ralphs and M. Guzelsoy. The SYMPHONY callable library for mixed-integer
linear programming. In Proceedings of the Ninth INFORMS Computing Society Con-
ference, pages 61–76, 2005.

[60] T.K. Ralphs and L. Ladányi. COIN/BCP User’s Manual, 2001. Available from http:
//www.coin-or.org.

[61] T.K. Ralphs, L. Ladányi, and M.J. Saltzman. A library hierarchy for implementing
scalable parallel search algorithms. Journal of Supercomputing, 28:215–234, 2004.

[62] T.K. Ralphs, L. Ladányi, and M.J. Saltzman. A library hierarchy for implementing
scalable parallel search algorithms. The Journal of Supercomputing, 28:215–234, 2004.

[63] P. Sanders. Tree shaped computations as a model for parallel applications, 1998.

[64] Y. Shinano, K. Harada, and R. Hirabayashi. A generalized utility for parallel branch
and bound algorithms. In Proceedings of the 1995 Seventh Symposium on Parallel
and Distributed Processing, pages 392–401, Los Alamitos, CA, 1995. IEEE Computer
Society Press.

[65] A. Sinha and L.V. Kalé. A load balancing strategy for prioritized execution of tasks. In
Seventh International Parallel Processing Symposium, pages 230–237, Newport Beach,
CA., April 1993.

[66] H. W. J. M. Trienekens and A. de Bruin. Towards a taxonomy of parallel branch and
bound algorithms. Technical Report EUR-CS-92-01, Department of Computer Science,
Erasmus University, 1992.

[67] H. W. J. M. Trienekens and A. de Bruin. Towards a taxonomy of parallel branch and
bound algorithms. Report EUR-CS-92-01, Erasmus University, Rotterdam, 1992.

[68] S. Tschoke and T. Polzer. Portable Parallel Branch and Bound Library User Manual:
Library Version 2.0. Department of Computer Science, University of Paderborn.

[69] V. Chvátal. Linear Programming. W.H. Freeman and Company, 1983.

49

[70] Y. Xu, T.K. Ralphs, L. Ladányi, and M.J. Saltzman. ALPS: A framework for imple-
menting parallel search algorithms. In Proceedings of the Ninth INFORMS Computing
Society Conference, pages 319–334, 2005.

50

