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Abstract

This paper addresses the value function of a general mixed integer linear optimization prob-
lem (MILP). The value function describes the change in optimal objective value as the right-hand
side is varied and understanding its structure is central to solving a variety of important classes
of optimization problems. We propose a discrete representation of the MILP value function and
describe a cutting plane algorithm for its construction. We show that this algorithm is finite
when the set of right-hand sides over which the value function of the associated pure integer
optimization problem is finite is bounded. We explore the structural properties of the MILP
value function and provide a simplification of the Jeroslow Formula obtained by applying our
results.

1 Introduction

Understanding and exploiting the structure of the value function of an optimization problem is a
critical element of solution methods for a variety of important classes of multi-stage and multi-level
optimization problems. Previous findings on the value function of a pure integer linear optimiza-
tion problem (PILP) have resulted in finite algorithms for constructing it, which have in turn
enabled the development of solution methods for two-stage stochastic pure integer optimization
problems (Schultz et al., 1998; Kong et al., 2006) and certain special cases of bilevel optimization
problems (Bard, 1991, 1998; S DeNegre, 2011; Dempe et al., 2012). Studies of the value function of a
general mized integer linear optimization problem (MILP), however, have not yet led to algorithmic
advances. Algorithms for construction have only been proposed in certain special cases (Giizelsoy
and Ralphs, 2006), but no practical characterization is known. By “practical,” we mean a charac-
terization and associated representation that is suitable for computation and which we can use to
formulate problems in which the value function of a MILP is embedded, e.g., multi-stage stochastic
programs.

In this paper, we extend previous results by demonstrating that the MILP value function has
an underlying discrete structure similar to the PILP value function, even in the general case. This
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discrete structure emerges from separating the function into discrete and continuous parts, which
in turn enables a representation of the function in terms of two discrete sets. We show that this
representation can be constructed and propose an algorithm for doing so. Both the representation
and the algorithm are finite under the assumption that the set of right-hand sides over which the
related PILP value function is finite is bounded.

We consider the value function associated with a nominal MILP instance defined as follows. The
variables of the instance are indexed on the set N = {1,...,n}, with I = {1,...,7} denoting the
index set for the integer variables and C' = {r +1,...,n} denoting the index set for the continuous
variables. For any D C N and a vector y indexed on N, we denote by yp the sub-vector consisting
of the corresponding components of y. Similarly, for a matrix M, we denote by Mp the sub-matrix
constructed by columns of M that correspond to indices in D. Then, the nominal instance we
consider throughout the paper is given by

zip= inf ¢] x4 cly, (MILP)
(zy)eX

where (¢} ,cl)T € R™ is the objective function vector and X = {(x,y) € ZL xRY : Ajz+Acy = d}
is the feasible region, described by A; € Q™*", Ac € Q™*("=7) and d € R™.

A pair of vectors (x,y) € X is called a feasible solution and CITm + cgy is its associated solution
value. For such a solution, the vector z is referred to as the integer part and the vector y as the
continuous part. Any (z*,y*) € X such that cITa:* + cgy* = zyp is called an optimal solution.
Throughout the paper, we assume rank(A,d) = rank(A) = m.

The value function is a function z : R™ — R U {00} that describes the change in the optimal
solution value of a MILP as the right-hand side is varied. In the case of (MILP), we have

2(b)= inf cjx+cly Vbe B, (MVF)
(z,y)€S(b)
where for b € R™, S(b) = {(z,y) € ZI, x R}"™" : Ajz + Acy = b} and S;(b) = {x € 7 . Arx = b}.
Welet B={beR™ :S(b) #0}, By={beR™ :S;(b) # 0} and S; = UpecpSi(b). By convention,
we let z(b) = oo for b € R™ \ B and z(b) = —oo when the infimum in (MVF) is not attained for
any x € S(b) for b € B. To simplify the presentation, we assume that z(0) = 0, since otherwise
z(b) = —oo for all b € R™ with S(b) # 0 (Nemhauser and Wolsey, 1988).
To illustrate the basic concepts, we now present a brief example that we refer to throughout
the paper.

Example 1. Consider the MILP value function defined by

7
Z(b) = inf 31 + 5%2 + 3x3 + 6x4 + Tx5

s.t. 6x1 + dx9g — 4x3 + 224 — Tx5 = b (EX-l)

X1, T2, T3 € Ly, T4,T5 € Ry,
Figure 1 shows this non-convex, non-concave piecewise polyhedral function. m
Although the MILP with which the value function in Example 1 is associated has only a single

constraint, the structure of the function is already quite complex. Nevertheless, the function does
have an obvious regularity to it. The gradient of the function is always one of only two values,
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Figure 1: MILP Value Function of (Ex.1).

which means that its epigraph is the union of a set of polyhedral cones that are identical, aside
from the location of their extreme points. This allows the function to be represented simply by
describing this single polyhedral cone and a discrete set of points at which we place translations of
it.

In the remainder of the paper, we formalize the basic idea illustrated in Example 1 and show
that it can be generalized to obtain a similar result that holds for all MILP value functions. More
specifically, in Section 3, we review some basic properties of the LP value function and define the
continuous restriction, an LP whose value function yields the aforementioned polyhedral cone. In
Sections 4, we present the first main result in Theorem 1, which characterizes the minimal discrete
set of points that yields a full description of the value function. This discrete set generalizes the
minimal tenders of Kong et al. (2006) used to represent the PILP value function. In Section 5,
we exploit this representation to uncover further properties of the value function, culminating in
Theorem 2, which shows that there is a one-to-one correspondence between the discrete set of
Theorem 1 and the regions over which the value function is convex (the local stability regions). In
Section 6, we discuss the relationship of our representation with the well-known Jeroslow Formula,
showing in Theorem 3 that the original formula can be simplified using the discrete representation of
Theorem 1. Finally, in Section 7 we demonstrate how to put the representation into computational
practice by presenting a cutting plane algorithm for constructing a discrete representation such as
the one in Theorem 1 (though possibly not provably minimal). Before getting to the main results,
we next summarize related work.

2 Related Work

Much of the recent work on the value function has addressed the pure integer case, since the PILP
value function has some desirable properties that enable more practical results. Blair and Jeroslow
(1982) first showed that the value function of a PILP is a Gomory function that can be derived
by taking the maximum of finitely many subadditive functions. Conti and Traverso (1991) then
proposed using reduced Grobner basis methods to solve PILPs. Subsequently, in the context of
stochastic optimization, Schultz et al. (1998) used the so-called Buchberger Algorithm to compute



the reduced Grobner basis for solving sequences of integer optimization problems which differ only
in their right-hand sides. In the same paper, the authors recognized that over certain regions of
the right-hand side space, the pure integer value function remains constant. This property turned
out to be quite significant, resulting in algorithms for two-stage stochastic optimization (Ahmed
et al., 2004; Kong et al., 2006). In the same vein, Kong et al. (2006) proposed using the properties
of a pure integer optimization problem in two algorithms for constructing the PILP value function
when the set of right-hand sides is finite.

The complex structure of the MILP value function makes the extension of results in linear
and pure integer optimization to the general case a challenge. In particular, with the introduction
of continuous variables, we no longer have countability of the set of right-hand sides for which
S(b) # 0 (or finiteness in the case of a bounded S(b)), which is a central property in the PILP case.
The MILP value function also ostensibly lacks certain properties used in previous algorithms for
eliminating parts of the domain from consideration in the pure integer case. For the mixed integer
case, Bank et al. (1983) studied the MILP value function in the context of parametric optimization
and provided theoretical results on regions of the right-hand side set over which the function is
continuous. In a series of papers, Blair and Jeroslow (1977, 1979) studied the properties of the
MILP value function and showed that it is a piecewise polyhedral function. Blair and Jeroslow
(1984) identified a subclass of Gomory functions called Chvdtal functions to which the general
MILP value function belongs. However, a closed form representation was not achieved until a
decade later in a subsequent work of Blair (1995). The so-called Jeroslow Formula represents
the MILP value function as collection of Gomory functions with linear correction terms. This
characterization is related to ours and we discuss this relationship in Section 6.

3 The Continuous Restriction

To understand the MILP value function, it is important to first understand the structure of the
value function of a linear optimization problem. In particular, we are interested in the structure of
the value function of the LP arising from (MILP) by fixing the values of the integer variables. We
call this problem the continuous restriction (CR) w.r.t a given & € Sr. Its value function is given
by
Z(b; ) = ¢] & + inf cly
st. Acy =b— Az (CR)
y e R

For a given & € S7, we let S(b,2) = {y € R™" : Acy = b — Art}. As before, we let Z(b;2) = oo
if S(b,z) = 0 for a given b € B and z(b;Z) = —oo if the function value is unbounded. As we will
show formally in Proposition 4, it is evident that for any & € Sy, Z(-; ) bounds the value function
from above, which is the reason for the notation.

When & = 0 in (CR), the resulting function is in fact the value function of a general LP, since
A is itself an arbitrary matrix. In the remainder of the section, we consider this important special
case and define

zo(b) = inf cly
st. Acy =b (LVF)
ye R
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Figure 2: The value function of the continuous restriction of (Ex.2) and a translation.

We let K be the polyhedral cone that is the positive linear span of Ag, i.e., K = {\ A" 4+ ... +
An—r A" 2 A1, ..., Ay > 0}. As we discuss later, this cone is the set of right-hand sides for which
zc is finite and plays an important role in the structure of both the LP and MILP value functions.
The following example illustrates the continuous restriction associated with a given MILP.

Ezample 2. Consider the MILP

inf 2z1 + 6x9 + 723 + Sy
st.x1 +2x0 —Tx3 +24 =0 (Ex.2)
T € Z+,$2,.%'3,.%’4 eR,.

The value functions of the continuous restriction w.r.t. 1 = 0 and x; = 1 are plotted in Figure 2.
|

Note that in the example just given, z(+; 1) is simply a translation of z¢. As we will explore in more
detail later, this is true in general, so that for & € S7, we have

Z(b;#) = ¢] & + zo(b— Ap) Vb € B.

Thus, the following results can easily be generalized to the continuous restriction functions w.r.t.
points other than the origin.

We shall now more formally analyze the structure of zo. We first present a representation due
to Blair and Jeroslow (1977), who characterized the LP value function in terms of its epigraph. Let
L = epi(zc).

Proposition 1 (Blair and Jeroslow, 1977) The value function of z¢ is a convex polyhedral func-
tion and its epigraph L is the convex cone

cone{ (A" ¢, 41), (A™2 cria), ..., (A" cn), (0,1)}.

The above description of the LP value function in terms of a cone is not computationally convenient
for reasons that will become clear. We can derive a more direct characterization of the LP value



function by considering the structure of the dual of (LVF) for a fixed right-hand side beR™. In
particular, this dual problem is

o T
sup b' v,
v (3.1)
where Sp = {v € R™ : Alv < cc}. Note that our earlier assumption that z(0) = 0 implies Sp # 0.
Let {v'}ick be the set of extreme points of Sp, indexed by set K. When Sp is unbounded, let
its set of extreme directions {d’ }jer be indexed by set L. From strong duality, we have that
zo(b) = SUpP,cs, b'v when Sp # (). If the LP with right-hand side b has a finite optimum, then
zc(l;) = sup b'v=supb' '\ (3.2)
vESp ieK ’
Otherwise, for some j € L, we have b'd/ > 0 and zc(l;) = +4o00. We can therefore obtain a
representation of the cone L as

{(b,z) eR™:pTi <2 bTd/ <0,ie K,j e L}.

Let £ be the set of index sets of the nonsingular square sub-matrices of Ac corresponding
to dual feasible bases. That is, £ € £ if and only if 3¢ € K such that A};Vi = cg. Abusing
notation slightly, we denote this (unique) v* by vg in order to be consistent with the literature.
The cone £ has an extreme point if and only if there exist m + 1 linearly independent vectors
in the set {(v*, —1) : i € K} U{(d, 0) : j € L}. It is easy to show that in this case, the
origin is the single extreme point of £ and all dual extreme points are optimal at the origin, i.e.,
UEO = CEAEIO = 2¢(0) = 0 for all E € £. Conversely, when £ has an extreme point, it must be
the single point at which all the inequalities in the description of £ are binding.

The convexity of z¢(b) follows from the representation (3.2), since z¢(b) is the maximum of a
finite number of affine functions and is hence a convex polyhedral function (Bazaraa et al., 1990;
Blair and Jeroslow, 1977). With respect to differentiability, consider a right-hand side b € B for
which the optimal solution to the corresponding LP is non-degenerate. Let the (unique) optimal
basis and optimal dual solution be Ag and vg, respectively, for some E € £. As a result of the
unchanged reduced costs, under a small enough perturbation in b, Ag and vg remain the optimal
basis and dual solution to the new problem. Hence, the function is affine in a neighborhood of b
and differentiability of the LP value function at b follows. On the other hand, whenever the value
function is non-differentiable, the problem has multiple optimal dual solutions and every optimal
basic solution to the primal problem is degenerate. These observations result in the following
characterization of the differentiability of the LP value function.

Proposition 2 (Bazaraa et al., 1990) If z¢ is dzﬁer@ntmble at b € K, then the gradient of z¢ at
b is the unique v € Sp such that zo(b) = b v. If b € int(K) is a point of non- dzﬁ‘erentmbzlzty of
2c, then there exist v',1v?,...,v° € Sp with s > 1 such that zC(b) =bT vl =pT12? =pl v
and every optimal basic solution to the associated LP with right-hand side b is degenemte.

Ezample 3. In (Ex.2), we have

3b it b>0

zc(b)—sup{ub:—1§V§3,V€R}—{_b b0



Then, & = {{1},{2},{3}} with Ay = 2, Appy = =7, and Agsy = 1. The corresponding basic
feasible solutions to the dual problem are 3, —1, and 5 respectively. If the value function is
differentiable at b € R, then its gradient at b is either -1 or 3. These extreme points describe the
facets of the convex cone £ = cone{(2,6),(—7,7),(1,5),(0,1)} = {(b,2) € R? : 2 > 3b, z > —b}.
Note that we can conclude that fixing 1 to 0 in (Ex.2) does not affect its value function. Finally,
note that K =R, i.e., z¢(b) < oo forallbe R. m

We have so far examined the LP value function arising from restricting the integer variables to a
fixed value and discussed that such a value function inherits the structure of a general LP value
function. The LP value function, though it arises from a continuous optimization problem, has a
discrete representation in terms of the extreme points and extreme directions of its dual. In the
next section, we study the effect of the addition of integer variables.

4 A Characterization of the MILP Value Function

The goal of this section is to derive a discrete representation of a general MILP value function
building from the results of the previous section. We observe that the MILP value function is the
minimum of a countable number of translations of zo and thus retains the same local structure
as that of the continuous restriction (CR). By characterizing the set of points at which these
translations occur, we arrive at Theorem 1, our discrete characterization.

From the MILP value function (Ex.1) and its continuous restriction w.r.t & = 0, plotted respec-
tively in Figures 1 and 2, we can observe that when integer variables are added to the continuous
restriction, many desirable properties of the LP value function, such as convexity and continuity,
may be lost. The value function in this particular example remains continuous, but as a result of
the added integer variables, the function becomes piecewise linear and additional points of non-
differentiability are introduced. In general, however, even continuity may be lost in some cases.
Let us consider another example.

Ezample 4. Consider

z(b) = inf x1 — Zacg + §x3 + §x4

4 2
5 1 L (Ex.4)
s.t. 4x1 x2+2x3+3x4—b

x1,T2 € Z+,$3,.’L‘4 S R+.

Figure 3 shows this value function. As in (Ex.1), the value function is piecewise linear; however,
in this case, it is also discontinuous. More specifically, it is a lower semi-continuous function. The
next result formalizes these properties. m

Proposition 3 (Nemhauser and Wolsey, 1988; Bank et al., 1983) The MILP wvalue function
(MVF) is lower semi-continuous, subadditive, and piecewise polyhedral over B.

Characterizing a piecewise polyhedral function amounts to determining its points of discontinuity
and non-differentiability. In the case of the MILP value function, these points are determined by
properties of the continuous restriction, which has already been introduced, and a second problem,
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Figure 3: Value Function (Ex.4).

called the integer restriction, obtained by fixing the continuous variables to zero. This problem is
defined as follows.
z7(b) = infcj z
st. Arx =0 (IR)
reZl.

The role of the integer restriction in characterizing the value function will become clear shortly,
but we first need to introduce some additional concepts.

Recalling that the continuous restriction for any & € S; can be expressed as z(b;z) = C}rﬁ? +
zc(b— A1), we obtain the following representation of (MVF) in terms of the continuous restriction:

2(b) = inf ¢]x+20(b— Arz) = inf zZ(b;x) = inf z(b) + z¢(b—b) Vbe B. (4.1)
xESI Z‘ESI BGB[

This shows that the MILP value function can be represented as a countable collection of value
functions of continuous restriction functions arising from translations of the LP value function z¢.
Describing the value function consists essentially of characterizing the minimal set of points at which
such translations must be located to yield the entire function. The points at which translations
may potentially be located can be thought of as corresponding to vectors = € Sy, as in the first two
equation above, though more than one member of S; may specify the same location. Equivalently,
we can also consider describing the function simply by specifying its value at points in By, as in
the third equation above, which makes the correspondence one-to-one. Despite being finite under
the assumption that By is finite, this characterization is nevertheless still quite impractical, as both
St and By may be very large. As one might guess, it is not necessary to consider all members of
By in order to obtain a complete representation. Later in this section, we characterize the subset
of By necessary to guarantee a complete description. This characterization provides a key insight
that leads eventually to our algorithm for construction.

Before moving on, we provide some examples that illustrate how the structure of z¢ influences
the structure of (MVF). First, we examine the significance of the domain of z¢ in the structure
and the continuity of the MILP value function with the following example.



Ezample 5. Consider again the value function (Ex.4). Its continuous restriction w.r.t = 0 is

3 )
== i f - -
Zc(b) 11 x|+ 2%2

t = +1 =b
S..2171 31‘2—

xr1,T9 € R+.

Equivalently,

zo(b) =sup{vb: v < ;, v € R} (4.2)
Here, the positive linear span of {3, 1} is K = Ry. We also have z¢(b) = 3b for all b € K. The
gradient of z¢(b) at any b € Ry \{0} is 3, which is the extreme point of the feasible region of (4.2).
Note that for b € R_, z¢(b) = +00 because the continuous restriction w.r.t the origin is infeasible
whenever b € R_ and its corresponding dual problem is therefore unbounded. However, in the
modification of this problem in (Ex.4), we have B = R, while K remains R;. This is because the
additional integer variables result in translations of I into R_. These translations result in the
discontinuity of the value function observed in (Ex.4). m

The next result shows that the continuous restriction with respect to any fixed & € S; bounds the
value function from above, as it is a restriction of the value function by definition.

Proposition 4 For any & € Sy, Z(+; &) bounds z from above.
Proof. For & € S; we have

Z(b; %) = ¢] & + z0(b — Az) > insf cj x4 zo(b— Arz) = 2(b). 0
reEST

The second result shows that the continuous restriction with respect to the origin coincides with
the value function z over the intersection of K and some open ball centered at the origin. We denote
an open ball with radius € > 0 centered at a point d by N(d).

Proposition 5 There exists € > 0 such that z(b) = z¢(b) for all b € N (0) N K.

Proof. At the origin, we have z(0) = 0 with a corresponding optimal solution to the MILP being
(x7,x¢) = (0,0). For a given b € R, as long as there exists an optimal solution Z to the MILP with
right-hand side b such that & = 0, we must have z(b) = z¢(b). Therefore, assume to the contrary.
Then for every e > 0, 3b € N.(0) N K, b # 0 such that zo(b) > z(b). Consider an arbitrary e > 0
and an arbitrary b € NV.(0) N K, b # 0 such that z¢(b) > z(b). Then if Z is a corresponding optimal
solution to the MILP with right-hand side b, we must have & # 0. Let F and E denote the set of
column indices of sub-matrices of A¢ corresponding to optimal bases of the continuous restrictions
at 0 and &, respectively (note that both must exist).

Case i. F = E. We have
20(b) > 2(b) = cpAR'b > ] @+ e[ AT — cL AT Ard

=0>c¢d— CEAEIAI:%.

10



However, the last inequality implies that at the origin, (&, A;A 1Z) provides an improved solution

so that z(0) < 0, which is a contradiction.
Case ii. Ag # Aj;. We have z¢(b) = chAL'D > chglb, which is a contradiction of the fact that
zc is the value function of the continuous restriction at 0.m

Ezample 6. Figure 4a shows that the epigraph of the value function of (Ex.1) coincides with the cone
epi(zc) = cone{(2,6),(=7,7),(0,1)} on N3125(0). Similarly, Figure 4b demonstrates that the epi-
graph of the discontinuous value function (Ex.4) coincides with epi(z¢) = cone{(3, 2), (%, 5),(0,1)}
on No_25(0) NK = [0, 0.25) CR'. m

M 2 // ¢
- N4 4

Now B oo N oo

05 1 1.5 2 25

\

U
N
(4]

U
N

\
N
o

]

]
o
(]

PNe)

5 &8 7 6 5 4 3 2 T 2 3 4 5 6 7 8 8 " ./3/2/0_0_5

(a) (b)

Figure 4: The MILP value function and the epigraph of the (CR) value function at the origin.

The characterization of the value function we proposed in (4.1) is finite as long as the set St is
finite. However, there are cases where the set

Br={be B:S;(b) #0}

is finite, while S; remains infinite. Clearly in such cases, there is a finite representation of the value
function that (4.1) does not provide. We can address this issue by representing the value function
in terms of the set B rather than the set S7, but even then, the representation is not minimal,
as not all members of B; are necessary to the description. We next study the properties of the
minimal subset of Bj that can fully characterize the value function of a MILP.

From the previous examples, we can observe that when the MILP has only a single constraint
and the value function is thus piecewise linear, the points necessary to describe the function are
the lower break points. To generalize the notion of lower break points to higher dimension, we need
some additional machinery.

In Figure 4, the lower break points are also local minima of the MILP value function and one
may be tempted to conjecture that knowledge of the local minima is enough to characterize the
value function. Unfortunately, it is easy to find cases for which the value function has no local

11



minima and yet still has the nonconvex structure characteristic of a general MILP value function.
Consider the following example.

Ezample 7. Consider
z(b) = inf — 2z + 629 — Tx3
st.xy —2x0+Tx3=0 (Ex.6)
x1 € Zy,xa, 3 € R,
As illustrated in Figure 5, the extreme point of the epigraph of the continuous restriction of the

problem does not correspond to a local minimum. In fact the value function does not have any
local minima. =

Figure 5: MILP value function (Ex.6) with no local minimum.

In the previous examples, the epigraph of z¢ was also always a pointed cone. As a result, the MILP
value function had lower break points that corresponded to the extreme points of epi(z(-;x)) for
certain x € S7. However, the cone epi(z¢) may not have an extreme point in general. When it fails
to have one, in the single-dimensional case, the MILP value function will be linear and will have
no break points. Consider the following example.

Ezample 8. Consider
Z(b) =inf 2x1 + 6x9 — Tx3

S.t. 21 —6xo +Tx3 =0 (Ex.7)
r1 € Ly, xa,23 € Ry

In this example, the value function (Ex.7) coincides with the value function of the continuous
restriction w.r.t the origin. This function is plotted in Figure 6. m

In this last example, the epigraph of the value function contains a line that passes through the
origin. This property can be generalized to any dimension. If epi(z¢) is not a pointed cone, then

12
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Figure 6: Linear and convex MILP and CR value functions to (Ex.7).

for any given & € Sy, the boundary of the epigraph of Z(-;Z) contains a line that passes through
(Arz,z(Arz;2)). The boundary of the resulting MILP value function therefore contains parallel
lines that result from translations of zZ. Clearly, to characterize such a value function, one would
need to have, for each such line, a point b such that (b, z(b)) is on both the line and the value
function of the continuous restriction, z¢. This case, in which epi(z¢) is not a pointed cone, is,
however, an edge case and its consideration would complicate the presentation substantially. For
the remainder of this section, we therefore assume the more common case in which epi(z¢) is a
pointed cone.

To generalize the set of lower break points to higher dimension, we introduce the notion of
points of strict local convezity of the MILP value function. We denote the set of these points by
Bsrco-

Definition 1 A point b € By is a point of strict local convexity of the function f : R™ — RU{zxo0}
if for some € > 0 and g € R™, we have

F(0) > f(B)+g"(b—0b) for all b e N.(b), b #b.

This definition requires the existence of a hyperplane that is tangent to the function f at the point
b e By, while lying strictly below f in some neighborhood of b. For the continuous restriction
with respect to & € Sy, this can happen only at the extreme point of the epigraph of the function,
if such a point exists. Note that at such a point, we must have Z(B;i) = c}—i. Furthermore, if
i € arginf,es, Z(b; ), then we will also have z(b; &) = z;(b).

Proposition 6 For a given & € S, be Ari+K isa point of strict local convexity of Z(+; &) if and
only if (b, Z(b; &)) is the extreme point of epi(Z(-;Z)).

Proof. Let # € S; and b € A;i + K be given as in the statement of the theorem. We use the
following property in the proof. Let the function H; be defined by

400 otherwise,

T+ (b—A)'nt forbek
Ht(b):{01x+( 1Z)'nt forbek,
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where n' € {v'}iex U {d’}jcr. Then, we have
Z(b;z) = sup Hy(b)
te KUL
Moreover,
0z(b; #) = conv({VHy,...,VH,}pep) = conv({n', ..., 7P pep) # 0,
where P C K U L and |P| > 1 and finally, we have that

z(b; 2) = Hy(b) = - -- = Hy(b) for p € P. (4.3)

(=) Let € and g be the radius of the ball and a corresponding subgradient showing the strict local
convexity of z(-; ) at b. If Z(-; ) is differentiable at b, then Jv € R™ such that 8z(-; &) = {v}, and
therefore g = v. Then we trivially have that b cannot be a point of strict local convexity of z(+; ),
as there always exists ¢ with 0 < ¢’ < e such that on Ny (b), we have z(b; 2) = z(b; 2) + v (b —b).
Therefore, z(-; #) cannot be differentiable at b.

Since z(+; &) is not differentiable at b, there are Hy,...,Hp,p € P, as defined above. In the case
that p > m, from the discussion in Section 3, b has to be the extreme point of epi(Z(-;&)). Next,
we show that b cannot be the extreme point of epi(z(+;2)) if p < m.

When 1 < p < m, equation (4.3) must still hold. Let

R={(b,z(b;2)) € (A;z +K) xR: 2(b;Z) = Hi(b) = --- = Hp(b) for p € P}
Then there exists b € N,(b) such that (b, 2(b)) € R and b # b. We have
Z(b;2) — 2(b; &) = (b—b) 't t € P.
Then we can conclude that for g € 0z(b; #) = conv({nt, ..., nP}), the function z(b; #)+g ' (b—b) also
coincides with z(b; &) as follows. Choose 0 < X' < 1,¢ € P such that g = > ,.p A'n', >, cp Af = 1.
From the equations 3 R o
MN(z(b;z) — 2(b:;2)) = X(b—b) "', te P

we have a contradiction to b being the point of strict local convexity of Z(+; ), since

2(bid) — 2(bs2) = > N(b—b)Tn' =g"(b—b).
t=1

(<) Since (b, z(b)) is the extreme point of epi(z(-;&)), then dz(b; ) = conv({n',...,n"}), where
p € P and we must have that [P| > m. Choose g € int(conv( n, ...,n"})). For an arbitrary
be Ari+ K, b # b there exists 7 € {n',..., 7"} such that z(b; &) = (b — Af AA)Tﬁ Then, from the
monotonicity of the subgradient of a convex function we have (7" — g')(b —b) > 0. Therefore,
Z(b;2) = z2(b;2) + 7" (b—b) > 2(b;&) +g"(b—b) Vbe Ari+ K, b#b. (4.4)

That is, b is a point of strict local convexity of Z(-;Z). m

Ezample 9. Consider the MILP in Example 4. The blue shaded region in Figure 7 is epi(z(-;1)).
The point (1,—2) is the extreme point of the cone epi(zZ(b;1)) and b = 1 is a point of strict local
convexity of the value function. m

Next, we discuss the points of strict local convexity of the MILP value function.
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Figure 7: The value function of the MILP in (Ex.6)

Proposition 7 IfB is a point of strict local convexity, then there exists & € St such that

o (b,z(b; %)) is the extreme point of epi(z(+;2)); and
o z(b;i) = ¢] & = z(b) = 2(b).

Proof. Let b be a point of strict local convexity. If there exists & S[(i)) such that & €
arginf,es, Z(b;z), then we have that c¢; # = 2(b). The remainder of the statement is trivial in

~

this case. Consider the case where such x does not exist. That is, for any (z,y) € S(b) such that
CIT:L‘ + cgy = z(l;), we have y > 0. Let one such point be (Z, ). Consider € > 0 used to show bis a
point of strict local convexity. If Z(-; &) coincides with z on N, (b), then from from Proposition 6 it
follows that b cannot be a point of strict local convexity. On the other hand, if z is constructed by
multiple translations of zZ over M(i))z since it attains the minimum of these functions, there cannot

be a supporting hyperplane to z at b, therefore b cannot be a point of strict local convexity. m

We note that the reverse direction of Proposition 7 does not hold. In particular, it is possible
that for some & € S; we have z(A;z) = CIT:)Z", but that A;Z is not a point of strict local convexity.
For instance, in example 1, for & = (1,0,1) we have that A;Z = 2 and that z(2;2) = 2(2) = 6.
Nevertheless, 2 is not a point of strict local convexity.

Points of strict local convexity may lie on the boundary of B;. The next example illustrates a
case where this happens.

Ezxample 10. Consider the MILP value function

z(b) = inf — 1 + 3o
st.x1 —3x2=0 (Ex.9)
xr1 € Z+, T € R+.

shown in Figure 8. If we artificially impose the additional restriction that b € [0, 2] for the purposes
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z(b)=—b 2(b;0) z(byl)  z(b;2)

N

Figure 8: MILP Value Function of (Ex.9) with By = [0, 2].

of illustration, it is clear that there is no point of strict local convexity in the interior of By, although
epi(z¢) is a pointed cone. m

Let us further examine the phenomena illustrated by the previous example. For a given & € Sy, let
b= Arz. We know that the single extreme point of epi(z(-;&)) is (b, 2(b; &) and that there must
therefore be m+1 (2 in this example) facets of epi(Z(-; 2)) whose intersection is this single extreme
point. Now, if b is not a point of strict local convexity, then on any A/;(l;) with € > 0, at most m
facets of epi(Z(+; Z)) coincide with the facets of the epigraph of the value function. This means that
there exists a direction in which z is affine in the neighborhood of (b, z(b; #)); that is, b cannot be
a point of strict local convexity of z. Given that the set By is assumed to be bounded, the value
function must contain a point (b, z(b)) such that b € bd(conv(B;))NB; along a line in this direction.
Let bd(B;) = bd(conv(B;)) N By. Since epi(z¢) is pointed, then b has to be a point of strict local
convexity of z. This latter point is the one needed to describe the value function—the epigraph of
the associated continuous restriction associated with b contains the continuous restriction w.r.t. z,
which means that AZ is not contained in the minimal set of points at which we need to know the
value function.

We are now almost ready to formally state our main result. So far, we have discussed certain
properties of the points of strict local convexity and showed that such points can belong to the
interior or boundary of By. Our goal is to show that the set Bgrc, which was previously defined
to the set of all points of strict local convexity, is precisely the minimal subset of B;, denoted in
the following result by B,.;n, needed to characterize the full value function. Let us now formally
define B,,;, to be a minimal subset of B; such that

z(b)= inf z(b)+zc(b—b) Vbe B. (4.5)

EBmin
Then we have the following result.
Proposition 8 B,,;, = Bsrc-

Proof. First, we show tAhat if b e B\ Bsrc, then it is not in the set Bypn. AIflA) € B\By, then
from (4.1) it follows that b is not necessary to describe the value function, then b ¢ B,,;,. Consider
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b € B/\Bsrc. Let @ € S7(b) such that c] & = z(b). Since epi(z¢) is assumed to be pointed, we
have z(b) = min{z(b; z1), z(b; x2),
,2((3; x)}, where k > 1 and z1,...,2; € S;. Then, for some | = 1,...,k and z; # & we have
min{z(b; &), z(b; 2;)} = z(b x7) and it follows that b & Bynin. Therefore, if b € Bunin, then b € By .
We next show that if b € Bgic, then b € Byyin. Let us denote by S"(b) the set of points = € SI
such that (A;z, ¢} x) coincides with the value function at b. If b & Bpin, then all the points in S (b)
can be eliminated from the description of the value function in (4.1). That is, we have

~ ~

z(b) = inf  Z(b;z).
2eS7\5'(b)

Therefore, for any pair (z,y) € S (b) that is an optimal solution to the MILP with right-hand side
fixed at b, we have y > 0. This, however, contradicts with Proposition 7 and we have that b cannot
be a point of strict local convexity of z. m

Because it will be convenient to think of the value function as being described by a subset of Sy,
rather than as a subset of By, we now express our main result in those terms. From Proposition 8,
it follows that there is a subset of S,,;, of S; that can be used to represent the value function, as
shown in the following theorem. Note, however, that while B,,;, is unique, Sy,;, is not.

Theorem 1 (Discrete Representation) Let Sy, be any minimal subset of St such that for any
b € Bumin, 3T € Spin such that Ajx = b and CIT.’L' = z(b).Then for b € B, we have

z(b) = inf z(b;x) = inf Z(b;x). (4.6)

IES] $esmin

Proof. The proof follows from Proposition 8, noting that a point & € Sy such that ¢; z > 2(Arz)
cannot be necessary to describe the value function. m

Ezample 11. We apply the theorem to (Ex.1). In this example, over b € [—9,9], we have that
Bmin = {_Sa _47 07 5a 6a 10} and Smm = {[Oa 0; 2]7 [Oa 0; 1]7 [Oa 0; 0]7 [Oa 1; 0]7 [1; O; 0}7 [Oa 2; 0]} Clearly?
the knowledge of the latter set is enough to represent the value function. m

Theorem 1 provides a minimal subset of S; required to describe the value function. We discuss
in Section 7 that constructing a minimal such subset exactly may be difficult. Alternatively, we
propose an algorithm to approximate Sy, (with a superset that is thus still guaranteed to yield
the full value function). This has proven empirically to be a close approximation. Before further
addressing the practical matter of how to generate the representation, we discuss some theoretical
properties of the value function that arise from our result so far in the next two sections. The
reader interested in the computational aspects of constructing the value function can safely skip
to Section 7 for the proposed algorithm, as that algorithm does not depend on the results in the
following two sections.
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5 Local Stability Regions

In this section, we demonstrate that certain structural properties of the value function, such as
regions of convexity and points of non-differentiability and discontinuity, can also be characterized
in the context of our representation. We show that there is a one-to-one correspondence between
regions over which the value function is convex and continuous—the so-called local stability sets—
and the set Bj,. We also provide results on the relationships between this set and the sets of
non-differentiability and discontinuity of the value function.

We start this section by introducing notation for the sets of right-hand sides with particular
properties.

Definition 2
e Brg(b) ={be B: z(b) = z(b) + zc(b—b)} is the local stability set w.r.t b € B;
e Bpg(b) =bd(Brg(b)) is the local boundary set w.r.t b € B;
e Bps = Uep,,,, Bes(b) is the boundary set;
e Byp = {b € B : z is not differentiable at b} is the non-differentiability set; and

e Bpc = {be€ B : z is discontinuous at b} is the discontinuity set.

Example 12. To illustrate the above definitions, consider the value function in Example 1. Let
b = 3. Over the interval [—9,9] we have that the function z(3) + z¢(b — 3) coincides with z at

~ ~

b € Brs(b) = [2.125,3]. Then, Bgg(b) = {2.125,3}. The minimal set is B, = {—8,—4,0,5,6}.
The boundary set consists of the union of the local boundary sets w.r.t. minimal points; i.e.,

Bps ={{-9,-7.75} U {—7.75,—-3.75} U {—3.75,2.125} U {2, 125,5.125} U {5.125, 8}}
={-9,-7.75,—3.75,2.125,5.125, 8}.

The non-differentiablity set is
Byp ={-9,-8,-7.75,—4,-3.75,0,2.125,5,5.125,6, 8, 9}.

Finally, Bpc = 0. m

The main result of this section is Theorem 2. The goal is to show that the value function is convex
and continuous over the the local stability sets associated with the members of By,;,. Furthermore,
in this theorem we demonstrate the relationship between the set B,,;,, the boundary set, Bgg, and

the sets of point of non-differentiability and discontinuity of the value function. We next state the
theorem.

Theorem 2
i. Letb € B.

— There exists ©* € Smin such that for any b € int(Brg(D)), there exists y € R such
that (z*,y) is an optimal solution to the MILP with right-hand side b.
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— 2z is continuous and convex over int(Brg(b)).

i. b€ Bgs if and only if for any € > 0, Ax* € Sy such that z(b) = c] ¥ + zo(b — Arx*) for all
b e N.(b).

iii. Let b € Boin. Then, int(BLS(l;)) is the maximal set of right-hand sides containing b over
which the value function is convex and continuous.

w. For the general MILP value function, we have By, € Byp and Bgs C Byp. Furthermore,
if the MILP value function is discontinuous, we have Bpin € Bpe C Bps € Byp-

Proof. We build to the proof of the theorem, which constitute the remainder of this section, by
proving lemmas 1-8, The first and second parts of the theorem follow from lemma 1 and lemma 2.
The third part of the theorem is shown in lemma 3. The last part follows from lemmas 5-8.

In the first lemma, we show properties of the function on differentiable regions within local stability
sets.

Lemma 1 Let b € B. Then there exists ©* € Sy such that for any b € int(Bpg(b)), there exists

y € R such that (x*,y) is an optimal solution to the MILP with right-hand side b. Furthermore,

~

z is continuous and convex over int(Brg(b))

Proof. From Theorem 1, for any b € B there exists 2" € Smin such that int(Brg(b)) = int({b €
B 2(b) = ¢ 2" + 2¢(b — Arz*)}). Therefore, for any b € int(Brs(b)), 2(b) = ¢] z* + cLy* where

y* = argmin{cly : Acy = b— Arz*,y € R?"}. The convexity and continuity of z on int(Brg(b))
follows trivially. m

Corollary 1 If z is differentiable over N C B, then there exist x* € Sy and E € & such that
2(b) = cjz* + v (b— Ajx*) for allb e N

Proof. Let an arbitrary be N be given. By Theorem 1, we know that there exists £* € Smin
such that z(b) = z(b; Z) and A;z* € Bypin. Then, we have z(b) = ¢] z* + v (b — Ajz*) with E € €
and there exists (z*, xp, x ), an optimal solution to the given MILP with right-hand side I;, where
zg and x correspond to the basic and non-basic variables in the corresponding solution to the
continuous restriction w.r.t. z*. It follows that the vector (z*, x5 + Az (b — b),zn) is a feasible
solution for any b € N.

Now, let another arbitrary point b € A" be given. We show that (z*, zp + Agl(l; —b), zy) must
be an optimal solution for right-hand side b. Since b € N,b € N and z is differentiable over N,
then vg is the unique optimal dual solution to the continuous restriction by Proposition 2 and we
have

2(b) = c] 2" + chlap + A (b — b)) + chan
=2(0)+vE(b—b) =c]a* +vg(b— Arz*) +vi(b—b)

=cjz* +vg(b— Arz*) = z(b; x*).
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Since b and b were arbitrary points in AV, the result holds for all such pairs and this ends the proof. m

It follows from the previous result that if the value function is differentiable over N' C B, then
its gradient at every right-hand side in N is a unique optimal dual solution to the continuous
restriction problem w.r.t. some z* € S;. This generalizes Proposition 2 on the gradient of the func-
tion at a differentiable point of the LP value function to the mixed integer case. As an example,
in (Ex.4) the gradient of z at any differentiable point is v = % Next, we show the second part of
Theorem 2 in the following result.

Lemma 2 b € Bgg if and only if for any € > 0, Px* € Sy such that z(b) = c}rx* + zo(b— Arz*)
for all b € N.(b).

Proof. (=) Let ¢ > 0 be given and assume Jz* € Sy such that 2(b) = c] 2* + zo(b — Az™*)
for all b € N (b). Now, let b € Binin be such that b €~BE5(13). Then for all b € N(b), we have
z(b) = z(b;z*) = z(b) + zc(b —b). That is, b € int(Brg(b)).

(<) Let b € Byun be such that b € int(Brs(b)). Then from Lemma 1, there exists * € St

optimal for all b € Brg(b). m

Next, we arrive at showing the third part of Theorem 2. This is shown in the following result.

Lemma 3 Let b € Bppn. Then, int(Brg(b)) is the mazimal set of right-hand sides containing b
over which the value function is convex and continuous.

Proof. Assume the contrary that B Lg(i)) with b € By is not the maximal set. Then, there exists
b in the boundary set w.r.t b, Bgs(b), and € > 0 such that the value function is continuous and
convex at N(b). From Theorem 1 and Lemma 2 we have

z(b) = min {c]z'+ (b— Azz®) "'}, b e No(b), (5.1)

' €Smin

where 1 is the optimal dual solution to 20(5 - A vai) and the set z¢ € S,,;, contains two or more
distinct members. Then, z is concave over N(b) unless all the polyhedral functions in (5.1) are the
same. But then N,(b) is a subset of Brg(b). m

So far, in Theorem 2 we have demonstrated that over the local stability set w.r.t a minimal point,
the integer part of the solution to the MILP remains constant and the value function of the MILP
is a translation of the continuous restriction value function. This can be viewed as a generalization
of a similar result that the value function of a PILP with inequality constraints is constant over its
local stability sets (z¢(b) = 0 for b € R™). These regions are characterized by Schultz et al. (1998).
In this case, the members of B,,;, generalize the notion of minimal tenders discussed in (Trapp
et al., 2013).

Before showing the forth and last part of Theorem 2, we need another lemma on the necessary
conditions for the continuity of the value function.

Lemma 4 If z¢(b) < oo for all b € B, then z is continuous over B.
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Proof. If zo(b) < oo for some b € B, then the continuous restriction w.r.t. the origin and its
dual are both feasible and have optimal solution values equal to zc(i)). Therefore, Z is finite and
continuous on B. It can be proved by induction that the minimum of countably many continu-
ous functions defined on B is continuous on B. The continuity of z follows by the representation
n(4.1). m

We now proceed to show the last part of the theorem. Lemmas 5-8 address the relationships
between the discontinuity set of the value function with the minimal set of right-hand sides, the
boundary set, and the set of non-differentiability points. Combining the following lemmas, the
proof of the theorem is complete.

Lemma 5 B,,;, € Bnp.

Proof. Assume the value function is differentiable at some be Bnin. Let Vz(b) = g. Then, there
exists some € > 0, such that z(b) = 2(b) + g"(b—"0) for all b € N(b). But then, from the definition
of a point of strict local convexity, b cannot be in Bgrc and therefore, b ¢ Bypin. B

Earlier we showed that the discontinuities of the MILP value function may only happen when
it no longer attains its minimum over some translated z and a switch to another translation is
required. This is used next to show the relationship between the discontinuity and boundary sets.

Lemma 6 Bpc C Bgg.

Proof. Assume to the contrary that there exists be Bpe but be int(BLS( ) for some b € Bnin.
Then from Theorem 2, there exists ¢ > 0 such that z(b) = 2(b) + zo(b — b) for all b € N.(b).
Therefore, z can only be continuous on N,(b), which is a contradiction.m

Lemma 7 If the value function is discontinuous, then B, C Bpco.

Proof. Since Bpc # 0, from Lemma 4 we have K # R™. Then, for any b € B we have b € Bgs(b);
that is, any right-hand side lies on the boundary of its local stability set. Consider b € Bpin. If 2 is
continuous at b then there exists € > 0 and b € By, such that b # b and for any by € A/;(E)\BES(I;)
we have z(b1) = z(b) 4 zc(by — b). Consider by € N, (b) N Brs(b). If z(b) + zc(ba — b) < z(by), then
z cannot be the value function at by. On the other hand, if z(b) + z¢(ba — b) lies above or on z(by),
it can be easily shown that there cannot exist a supporting hyperplane of z at b that lies strictly
below z on an arbitrarily small neighborhood of b. Then b cannot be in Bin. 1

The next result shows that if b belongs to the boundary set w.r.t a minimal point, then z is
non-differentiable at b.

Lemma 8 Bggs C Byp.

~ ~

Proof. Assume there exist some b € Bgs(b),b € BW" such that z is differentiable at . Then
there exists € > 0 and E € £ such that for all b € N(b) we have

2(b) = z(b) + v (b—b)
= 2(b) + vi (b —b) + v}, ( b) (5.2)
= 2(b) + v (b —b) = 2(b) + zc(b— b).
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Figure 9: Local stability sets and corresponding integer part of solution in (Ex.1).

But this contradicts the third part of Theorem 2. m

We finish this section by applying Theorem 2 to the continuous value function in Example 1
and the discontinuous value function in Example 4.

Ezample 13. Consider the value function (Ex.1). Figure 9 shows the optimal integer parts ', ..., z*

of solutions to the corresponding MILP over the local stability sets Brs(—4), Brs(0), Brs(5) and
Br,s(6), respectively. One can observe that both the minimal set and the boundary set of the value
function are subsets of its set of non-differentiability points.

Similarly, in Example 4, z' = [12]T,22 = [23]T,22 = [34]T,22 =[00]",2° = [1 1]7,25 =
[22]7, 27 = [3 3]T are respectively the integer parts of the solutions for right-hand sides in the local
stability sets Brs(—0.75), Brs(—0.5), ..., Brs(0.5), Brs(0.75). In this case, the value function is
discontinuous on the points that belong to the minimal set and we have B,,;, U Bgs = Bgs =
Bpc = Bnyp. ®

Remark 1 If z is continuous over B, then Sp # 0. This follows from the fact that if Sp = 0,
then z(0) = z¢(0) = —oo which contradicts z(0) = 0. Therefore, we have that z¢(b) > —oo for all
b € R™. However, we may still have zc(b) = 0o for some b € R™. The following is an example.

Ezample 14. The value function defined by (Ex.12) below is continuous on R, although K = R.

z(b) = infx; — a9
st. —x1+z9=2"> (Ex.12)
x1 € Z+, T € R+. |
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6 A Simplified Jeroslow Formula

The representation we have just described is related (though not so obviously) to a closed form
representation of the MILP value function identified by Blair (1995), which he called the Jeroslow
Formula. In this formula, the value function is obtained by taking the minimum of || functions,
each consisting of a PILP value function and a linear term. In this section, we study the connection
between our representation of the MILP value function and the representation in the Jeroslow
Formula and provide a simpler representation of it.

Let us denote by |-| the component-wise floor function. For E € £, we define

bl =Ag |Ap'b] Wbe B, Ts={b€ B: Ag'b€Z™}, and T = (") Tg.
Ee&

Consider a given be K. Let E € € be such that 2 = A;Jll; is the corresponding solution to the
continuous restriction w.r.t. the origin. If be Tg, it follows that b= AgpZp is an integer linear
combination of vectors in feasible basis Ag. Hence, the same is true for any member of T'.

Now consider the continuous restriction w.r.t to a given & € S;. Then we have more generally
that the corresponding solution to the continuous restriction w.r.t. z at a given be K+ A is

ip = AGNb— Ar#),

where F € £. In this case, when b € T, we can no longer guarantee that Tp € Z™. By an
appropriate scaling, however, we can ensure this property, and this is one of the key steps in
deriving the Jeroslow formula. Since all matrices are assumed to be rational, there exists M € Z,
such that MA;JIA]- € Z™ for all £ € £ and all j € I, with A; denoting the 4% column of A. Then,
since A;Jlb is integral for any b € T and F € £, we have that the value function of the following
PILP is equal to the value function of the original MILP for all b € T

Proposition 9 (Blair, 1995) There exists M € Zy such that z(b) = zpr(b) for all b € T, where
zp(b) = inf ¢] z + %céy
s.t. Arz + %Acy =b (6.1)
(x,y) €2, x 27",

Proof. Let M € Z such that MA;JlAj is a vector of integers for all £ € £ and j € I. Scaling A¢
and cc by 47 in (MVF) guarantees that A; € T for all j € I. Therefore, MAL (b— Arx) € Z™ for
all x € Z" and E € £. It follows that the solution value to z and z)s is equal for any b€ T. =

We illustrate the scaling procedure in the following example.

Ezample 15. Consider Example 1. In (Ex.1) we have AJ} € {6,5,—4} for j = 1,...,3 and £ =
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{{1},{2}} with Ay =2 and Agyy = —7. We choose M = 14 so that MA;JlAz; €Zforall E € €.
The corresponding scaled PILP problem is

7 3 1
ZM(b> =inf 3z + 51’2 + 3x3 + ?$4 + 51'5
s.t. 6x1 + S5x9 — 4$3 —+ ?1‘4 — 5335 =) (62)

T1, T2, T3, 4, T5 € L.

Figure 10a demonstrates the value function (6.2) for b € [—9,9]. From the figure we can see that
z and zps coincide on intervals of length % where Ag;y = 2 is optimal, while the two functions

coincide at intervals of length % where Agy = —7 is optimal.
Let us have a closer look at the interval [2,2.6] illustrated in Figure 10b. The set of feasible
right-hand sides for the scaled PILP (6.2) in this interval is {2,21—14,2%,2%, ye .,21%}. Among

these points, the value function coincides with (6.2) at 2 and 2.5. We have
2(b) = zc(b) = vyyb = 3b, for b € [2,2.125]
and . .
2(b) = 2(b;0,1,0]7) = 5 Try(b—5) =5 — (b—5), forbe[2125,26]

Since Tyyy = {b: MA{_ll}b = 7b € Z}, we have T{;y N [2,2.6] = {b: b= £,i=14,...,18}. Similarly,

Tioy N[2,2.6] = {b:b=%,i=4,5}.

(a) (b)
Figure 10: The scaled PILP value function (6.2).

Over the intervals for which Ag+ is the optimal dual basis for the corresponding continuous
restriction, z and zjs coincide at T+ = {b € B : b = |b|p. = kMAZL k € Z,}. For instance,
2(2) = zp(2) with 2 € Tyyy, but 2(21) # 2p(22) with 21 € T(1y. This is due to the fact that Ag,

is the optimal dual basis at 2(2) = z¢(2) but not at 2(22;[0,1,0]") = 2(21). =

Remark 2 Note that the z and z); may coincide at some right-hand side that is not in the set T,
e.g.,b=25¢ T{Q}\T{l}.
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Blair and Jeroslow (1984) identified a class of functions called Gomory functions and showed
that for any PILP, there exists a Gomory function whose value coincides with that of the value
function of the PILP wherever it is finite. To extend this result to the MILP case, Blair (1995)
proposed “rounding” any b € B to some |b|, with £ € £ and evaluating the latter using a PILP.
Note that (6.1) has to be modified to be used for this purpose, since it is not necessarily feasible
for all |b] 5, E € &; i.e., it is possible to have ip = M (A" — Ap' A1) < 0 for & € Z7,. To achieve
feasibility for all |b] , Blair (1995) proposed the following modification of (6.1) and used it in the
Jeroslow formula.

. 1 1
zyp(t) = infe] o+ Mcgy + z(—M Z Ay
jec

1
jeC
yeZ " x el yecly.

S

1. A
S ]af—i-M

Finally, he used linear terms of the form of v (b — |b]) to compensate for the “rounding” of
b to |b]p with E € £. Together, he showed that for any MILP, there is a Gomory function G
corresponding to the value function of the PILP (6.3) with

2(b) = mf {G([b]p) + vp(b— b))} (6.4)

The representation of the value function in (6.4) is known as the Jeroslow Formula.

Although it is a bit difficult to tease out, given the technical nature of the Jeroslow Formula,
there is an underlying connection between it and our representation. In particular, the set T has a
role similar to the role of B,,;, in our representation—it is a discrete subset of the domain of the
value function of the original MILP over which the original value function agrees with the value
function of a related PILP. This is the same property our set Bj,;, has and it is what allows the
value function to have a discrete representation. Furthermore, the correction terms in the Jeroslow
Formula play a role similar to the value function of the continuous restriction in our representation.

The advantage our representation has over the Jeroslow Formula is that By, is potentially a
much smaller set and the value M in the Jeroslow formula would be difficult to calculate a priori.
Furthermore, even if M could be obtained in some cases, evaluating the value function for a given
b € B using the Jeroslow formula ostensibly requires the evaluation of a Gomory function for every
|b] ; for all E € &, including those feasible bases A that are not optimal at b. The number of
evaluations required is equal to the size of | Jyc¢ Tr. These drawbacks relegate the Jeroslow formula
to purely theoretical purposes. On the surface, there does not seem to be any way to utilize it in
practice. Nevertheless, it is possible to simplify the Jeroslow Formula, replacing T by B, and
eliminating the need to calculate M in the process. This leads to a more practicable variant of the
original formula. First, we show formally that B,,;, is a subset of T

Proposition 10 B,,;, CT.

Proof. Let (Z,y) be an optimal solution to (MVF) at ?3 € Bpin. From Proposition 7, we have that
1 = 0 in any optimal solution of the value function at b. Then for all £ € £ we have

~ 1 _ R _ R R A
M =27 Ap [MAG Ari + MAG' Acg| = Aré = b.
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Then, V)JE:lA)forallEESandlA)eT.l

Corollary 2 If b € Bmin, then z(b) = z1(b) = za(b) = zr(b) = G(b) where G is the PILP value
function in (6.4).

Proof. The first equality follows from Proposition 7. The second equality holds since y = 0 in
any optimal solution to (MVF) at a right-hand side in Bpn. zap(b) is equal to z;p(b) since for
b= [b] for all b when b € By, and y can be fixed to zero in (6.3). The last equality holds for
any |blp, E€f. m

Theorem 3 (Simplified Jeroslow formula)

()= inf  {z7(b) —vg(b—Db)}. (6.5)
bEBpin,EEE

Proof. We have
26) = inf{G(1b] ) + vh (b~ b))

= inf {G) (b — b))

beTw,EcE

= inf {z7(b)+supvg(b—b)}
bEBmin Ee&

= inf  {z;(b) —vg(b—b)}.
bEBmin,EEE

The first equation is the Jeroslow Formula. The second one is because [b], € T for any F € £
and b € B. From Theorem 1, z(b) = inf{z(b;z) : Arx € Byn}, then the third equality holds. The
last equation follows trivially. m

The above result provides a variation of the Jeroslow formula where there is no need to find the
value of M, or to evaluate the PILP value function z;r for members of | 5. Tr. Instead, we need
to evaluate the simpler PILP value function z7 for the set By, €T C Jgege Tr. The difference in
the size of B,y and | pee TE can be significant. We provide an illustrative example next.

Ezample 16. The value function of (6.2) for right-hand sides in Ty U TYgy is plotted in Figure 11
with filled blue circles. At a point b € T (1} U Tqay, we have za(b) = G(b) where G is the Gomory
function corresponding to the PILP (6.2). The Jeroslow formula for the MILP value function
over [—9,9] requires finding all such points. Alternatively, we can have a smaller representation by
constructing the value function of the integer restriction of (Ex.1). i.e., z7(b) = inf{3z; + Tao+3wy
6x1 + bxo — 43 = B, x1,%2,x3 € ZT}. This value function is plotted in Figure 12. However, the
alternative formulation (6.5) requires finding G(I;) = Z[(B) for b € Bopin = {-8,-4,0,4,5,10}. m

26



12 .' . L] zSI(b) forbe TmuTm
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Figure 11: The value function of (6.2) for b € Ty U T9y U [-9,9].

7 Finite Algorithm for Construction

In this final section, we discuss the use of our representation in computational practice, which is
the ultimate goal of this work. To sum up what we have seen so far, we have shown that there
exists a discrete set Spin (not necessarily unique) over which the value of z can be determined by
solving instances of the integer restriction. Theorem 1 tells us that, in principle, if we knew z(Ajx)
for all x € Sy, then z(b) could be computed at any b € B by solving [Syn| LPs.

Our discrete representation of the value function in Theorem 1 is equivalent to

2(b) = inf c¢jz+20(b— Arz). (7.1)
TESmin
If |Spin| is relatively small, this yields a practical representation. The most straightforward way to
utilize our representation would then be to generate the set S,;, a priori and to apply the above
formula to evaluate z(b) for b & B,in.

In general, obtaining an exact description of the set Sp,;, seems to be difficult. One solution
to this problem would be to instead generate the value function of the integer restriction first by
the procedure of Kong et al. (2006), which is finite under our assumptions. We illustrate this
hypothetical procedure in the following example.

Ezample 17. Consider constructing the value function defined by (Ex.1) for b € [—7,7]. The value
function of the integer restriction zj is plotted in Figure 12. Clearly, complete knowledge of zj is
unnecessary to describe the MILP value function, as this requires evaluation for each point in Sy,
whereas we have already shown that evaluation of points in Sy,;, is enough. In this example, over
b € [-7,7], we have that Sy, = {0;0;1],[0;0;0],[0;1;0],[1;0;0]}. Therefore, four evaluations is
enough, yet at least 15 are required for constructing the value function of the PILP. m

Hence, this approach does not seem to be efficient. Instead, we anticipate overcoming this difficulty

in two different ways, depending on the context in which the value function is needed. First,
working with a subset of S,,;, still yields an upper approximation of z, which might be useful
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Figure 12: The value function of the integer restriction of (Ex.1) for b € [—9,9].

in particular applications where an approximate solution will suffice. Second, we anticipate that
in most cases, it would be possible to dynamically generate the set Si,in, adding points only as
necessary for improving the approximation in the part of the domain required for solution of a
particular instance. This approach would be similar to that of using dynamic cut generation to
solve fixed MILPs.

We demonstrate the potential of both such techniques here by describing a method for iteratively
improving a given discrete approximation of the value function by dynamically generating improving
members of Sy after the fashion of a cutting plane algorithm for MILP. At iteration k, we begin
with an approximation arising from S* C S; using the formula

Z(b) = inf{c]x + 20(b — Arx) : x € S¥,2(A1x) = ¢] x} (7.2)

and we generate the set S**1 by determining the point at which the current approximation is
maximally different from the true value function. This is akin to generation of the most violated
valid inequality in the case of MILP. An important feature of the algorithm is that it produces a
performance guarantee after each step, which bounds the maximum gap between the approximation
and the true function value. In what follows, we denote the current upper bounding function by Z.

In addition to the initial assumption z(0) = 0, we also assume the set B is non-empty and
bounded (while B can remain unbounded) to guarantee finite termination. Note, however, that it
is possible to apply the algorithm even if this is not the case. It is a simple matter, for example, to
generate the value function within a given box, even if By is an unbounded set. We note that we
do not require the assumption X = R™, although this is not a restrictive assumption in practice
anyway, since Ac can always be modified to satisfy it (Kall and Mayer, 2010).

Algorithm

Initialize: Let 2(b) = oo for all b € B, T° = o0, 2° = 0, S° = {2°}, and k = 0.
while T'* > 0 do:
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e Let z(b) = min{z, z(b; z*¥)} for all b € B.

o L+ k+1.
e Solve
¥ = max z(b) — ¢} x
st. Ajx =0 (SP)
x € L.

to obtain z*.

e Set Sk« Sk=1y {2F}

end while
return z(b) = z(b) for all b € B.

The key to this method is effective solution of (SP). We show how to formulate this problem
as a mixed integer nonlinear program below. For practical computation, (SP) can be rewritten
conceptually as

I'* = max 6
st. 0 <zZ(b)—clx
Arx =19
reZl.

(7.3)

The upper approximating function z(b) is a non-convex and non-concave piecewise polyhedral
function that is obtained by taking the minimum of a finite number of convex piecewise polyhedral
functions z. In particular, in iteration k > 1 of the algorithm we have z(b) = min;—; __x_1 2(b; 2°).
Therefore, the first constraint in (SP) can be reformulated as k — 1 constraints, the right-hand side
of each of which is a convex piecewise polyhedral function.

O+cjz<cia'+z2c(b— At i=1,... k-1 (7.4)
Next, we can write z¢ as
zo(b— Apz') = sup{(b— A;z®) "' - ALvt < e, vt € R™} (7.5)
and reformulate each of k — 1 constraints in (7.4) as
O+cla<cla'+(b— A v
ALvt < cc (7.6)
vt e R™
for i € {1,...,k — 1}. Together, then, in each iteration we solve
I'* = max6

st.0+cjo<clzt+ (A — At i=1,... k-1

Alvi<eo i=1,...,k—1 (7.7)
VY eER™ i=1,...,k—1
reZl.
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Due to the first constraint, the resulting problem is a nonlinear optimization problem. Nevertheless,
solvers do exist, e.g., Couenne (Belotti, 2009) that are capable of solving these problems. Assuming
that there is a finite method to solve (7.7), we next show that the proposed algorithm terminates
finitely and returns the correct value function.

Theorem 4 (Algorithm for Construction) Under the assumptions that Br is non-empty and
bounded and (7.7) can be solved finitely, the algorithm terminates with the correct value function
in finitely many steps.

Proof. For any x € Sj, cIT:L“ > z(b) for all b € B. From Proposition 7, we have that for z €
Smin € ST, c}—x — 2z(Arz). Therefore, for the solution of (7.7) at iteration k we have z* € S; and
c; 2% = z(Ara®). Since By is assumed to be bounded, then there is a finite number of such points
that can be generated in the algorithm. That is, Z can only be updated a finite number of times.

To see that at termination, z is the value function, first note that Proposition 4 implies that
the initialization and the updates of the approximating function result in valid upper bounding
functions. If in iteration k, the approximation z(b) is strictly above the value function at some
b € B, then T'* > 0 and there is some = € Sy for which ¢zz lies on the value function and below the
approximation. The subproblem is guaranteed to find such a point, therefore, in each intermediate
iteration we improve the approximation. When no such a point is found, the approximation is
exact everywhere and we terminate with I'* = 0. m

To illustrate, we apply the algorithm to two value functions: the first one is the function (Ex.1).
The second value function is from the two-stage stochastic integer optimization literature and refers
to the value function of the second-stage problem of the stochastic server location problem (SSLP)
in (Ntaimo and Sen, 2005).

Ezample 18. Consider (Ex.1) where 21,9, 23 € {1,...,5}. Figure 13 plots I'* normalized by I'!,
the initial gap reported with Z = z¢, versus the iteration number for problem (7.7) . When the
algorithm is executed, over b € [—7,7], the updates only occur for & such that A;z € {—4,5,6}.
This is because the remainder of the right-hand sides A;# in [~7, 7] correspond to (A;#, c] #) (green
circles in Figure 12) that lie either on or above z¢ (and therefore below the following updated
approximating functions). m

The proposed algorithm can be applied to MILPs with inequality constraints by adding appropriate
non-negativity restrictions to the dual variables v in (7.7). We see an example next.

Ezxample 19. Consider the second-stage problem of SSLP with 2 potential server locations and 3
potential clients. The first-stage variables and stochastic parameters are captured in the right-hand
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sided by, ...,bs. The resulting formulation is

z(b) =min 22y12 + 15y01 + 11ya2 + 4y31 + 22y32 + 100R
s.t. 15y21 +4yz1 — R < by
22119 + 11yog + 22y32 — R < by

Y11 + Y12 = by (7.8)
Y21 + Y22 = by
Y31 + ys2 = bs

Yij € B,ie {17273}7j € {1a2}7R S R—l—-

The normalized gap T'* /T versus the iteration number k is plotted in Figure 13. For this example,

non-positivity constraints on the dual variables corresponding to the first two constraints are added
to (7.7). m
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Figure 13: Normalized approximation gap vs. iteration number.

As one can observe in Figure 13, the quality of approximations improves significantly as the algo-
rithm progresses. The upper-approximating functions z obtained from the intermediate iterations
of the algorithm can be utilized within other solution methods that rely on bounding a MILP
from above. Clearly, such piecewise approximating functions z are structurally simpler than the
original MILP value function. Furthermore, as with SSLP, a common class of two-stage stochastic
optimization problems considers stochasticity in the right-hand side. With a description of the
value function of the second-stage problem, finding the solution to different second-stage problems
reduces to evaluations of the value function at different right-hand sides. The proposed algorithm

can therefore be incorporated into methods to solve stochastic optimization problems with a large
number of scenarios.
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8 Conclusion

In this work, we study the MILP value function, which is key to integer optimization sensitivity
analysis and solution methods for various classes of optimization problems. The backbone of our
work is to derive a discrete characterization of the MILP value function which can be utilized
in developing algorithms for such problems. We identify a countable set of right-hand sides that
describe the discrete structure of the value function and use this set to propose an algorithm for
the construction of MILP value function. This algorithm is finite when the set of right-hand sides
over which the value function of the associated pure integer problem is finite is bounded.

We further outline the connection between the MILP, PILP, and LP value functions. In partic-
ular, we show that the MILP value function arises from the combination of a PILP value function
and a single LP value function. We address the relationship between our representation and the
classic Jeroslow formula for the MILP value function. Finally, we study the continuity and convex-
ity properties of the value function, as well as the relationships between several critical sets of the
right-hand sides such as the set of discontinuity and non-differentiability points.

As a result of our work, we now have a method to dynamically generate points necessary to
describe a MILP value function. A subset of such points can be used to derive functions that bound
the value function from above, while the full collection of them is sufficient to have a complete
characterization of the value function. The dynamic generation of these points can be integrated
with iterative methods to solve stochastic integer and bilevel integer optimization problems. We
show describe such a method for the case of two-stage stochastic programming with mixed integer
recourse in (Hassanzadeh et al., 2014).
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