
Research overview

Imre Pólik
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1 Nonstandard duality concepts
Nonconvex quadratic optimization
Duality without regularity condition
Duality in non-exact arithmetic

2 Implementation of interior point methods
SeDuMi
Reimplementation of SeDuMi in Python
New input format for mixed LP/SOCP/SDP/etc...
Mixed integer conic optimization
Rounding procedures for conic optimization
Improved preprocessing techniques



Research overview

Imre Pólik
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The Lagrange-Slater dual

Primal Dual

f(x) < 0 f(x) + yT g(x) ≥ 0 ∀x ∈ C
g(x) ≤ 0 y ≥ 0
x ∈ C

If f : Rn → R, g : Rn → Rm, C ⊆ Rn, and

C is a convex set, f and g are convex functions

there is x̄ ∈ rint C such that g(x̄) < 0 (Slater point),

Weak duality Primal is solvable =⇒ dual is unsolvable

Strong duality Primal is unsolvable =⇒ dual is solvable

Why duality?

decide solvability
characterize optimality
drive algorithms
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Nonconvex quadratic systems

Theorem (S-lemma, Yakubovich (1972))

xTAx < 0 A+ λB � 0

xTBx ≤ 0 λ ≥ 0

If A,B ∈ Rn×n not necessarily PSD, and

there is x̄ ∈ Rn such that x̄TBx̄ < 0 (Slater point),
then

Weak duality If the primal is solvable then the dual is
unsolvable.

Strong duality If the primal is unsolvable then the dual is
solvable.

Why does it work? Generalization? Sufficient conditions?
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Three approaches
1 Convexity of{

(xTA1x, . . . , x
TAmx) : x ∈ Rn, (‖x‖ = 1)

}
classical area
joint numerical range
separation arguments
results over complex numbers

2 Low-rank solutions of AX = b, X � 0
more recent area
real: rank-1, complex: rank-2
equivalent to convexity

3 Generalized convexity

x 7→ (xTAx, xTBx) is König convex
modern area
easy theorems, hard conditions
abstract description
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New duality theorem

Theorem

If A1, . . . , Am are all linear combinations of two fixed
matrices then the solvability of

xTAix ≤ hi, i = 1, . . . ,m
x ∈ Rn

is equivalent to the nonsolvability of

m∑
i=1

yiAi � 0

yTh < 0
y ≥ 0.

(Conjectured in J.F. Sturm, S. Zhang, On cones of
nonnegative quadratic functions, Maths of OR, 28 (2003),
pp. 246–267.)
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Lagrange-Slater dual for conic optimization

max bT y min cTx

AT y + s = c Ax = b

s ∈ K x ∈ K∗,

Weak duality x, y, s: cTx− bT y ≥ 0 (duality gap)

Strong duality If one problem is strictly feasible (Slater)

the other problem is solvable
zero duality gap at optimality
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The regularized problem

Minimal cone (Kmin): spanned by the feasible solutions

Regularized problem (Borwein-Wolkowicz)

max bT y max bT y min cTx

AT y + s = c AT y + s = c Ax = b

s ∈ K s ∈ Kmin x ∈ K∗min

equivalent, Slater regular

What is Kmin and K∗min?

construction, structure, complexity?

Contribution: Kmin, K∗min for symmetric cones

Definition (Vinberg, 1963)

K is homogeneous if for all u, v ∈ intK there is a linear map
M such that Mu = v and MK = K.
K is symmetric if it is homogeneous and self dual (K = K∗).
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Exact dual for the symmetric conic case
max bT y min cT (x+ zL)

AT y + s = c A(x+ zL) = b

s ∈ K cT (xi + zi−1) = 0, i = 1, . . . , L

A(xi + zi−1) = 0, i = 1, . . . , L

z0 = 0

xi −B(zi, zi) ∈ K, i = 1, . . . , L
x ∈ K

Dual uses homogeneous cones

Zero duality gap

Primal feasible: primal bounded ⇔ dual feasible

Cone complexity: L(rank(K) + 1) + rank(K)
SDP: n2 + 2n (improves 2n2 + n, Ramana (1996))

SOCP: 8k (improves 2nk, standard result)
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Duality in non-exact arithmetic
min cTx max bT y

Ax = b AT y + s = c

x ∈ K s ∈ K

where x, c, s ∈ Rn, A ∈ Rm×n, b, y ∈ Rm and K ⊂ Rn is a
closed, convex, pointed, solid, self-dual cone

αx = inf ‖x‖ βu = inf ‖u‖
Ax = b AT y − u ∈ −K
x ∈ K bT y = 1,

Theorem (Approximate duality, Sturm, 1998)

αxβu = 1
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New stopping criteria

Algorithm: IPM with self-dual embedding
Large norm: unboundedness or infeasibility

Theorem

If bT y ≥ (τ ‖c‖+ θ ‖c̄‖) ρ then for every feasible solution x
of the primal problem we have ‖x‖ ≥ ρ.

Theorem

If τ ≤ 1−β
1+ρ then every optimal solution x∗, (y∗, s∗) of the

original primal-dual problem has

x∗T s0 + s∗Tx0 ≥ ρ.

Theorem

IPM complexity for both cases is O(
√

rank(K) log(ρ/ε)).
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Practical issues about feasibility

Importance of infeasibility
No solution.

Why? Certificate!

What does it mean?

Good news?
Wrong model? Wrong data?
Numerical problems?
Bug in the code?

Practical problems

Not known a priori
Feasible but impractical solution

Missing constraints

Weakly infeasible problems
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Reimplementation

Input format

MICP

Rounding

Preprocessing

SeDuMi

Optimization over symmetric cones

linear
second order
semidefinite
complex variables
free variables

Interior point method

primal-dual
self dual embedding
predictor-corrector scheme

Open source

GPL
Matlab, C

Widely used: both industry and academics

Active user group, forum
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History

late 1997 Jos F. Sturm starts SeDuMi

summer 1998 SeDuMi 1.0

November 2002 SeDuMi 1.05R5 (last version)

robustness, accuracy
general success

November 2003 Jos dies

Who will continue?

October 2004 AdvOL at McMaster takes over

How to continue?

June 2005 SeDuMi 1.1 (new version)

October 2006 SeDuMi 1.1R3

May 2007 Experimental parallel version

April 2008 SeDuMi 1.2 (64 bit version)
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Usability

AMPL, GAMS, AIMMS, MPL,. . . : no support for SDP

YALMIP (Johan Löfberg)

CVX (Michael C. Grant)

Gloptipoly (Didier Henrion)

SOSTools (Stephen Prajna et al.)

Strengths

high numerical accuracy

robustness

efficient sparse system handling

mixed second-order/semidefinite
problems

Matlab

Weaknesses

large dense
problems

memory
requirements

embeddability

Matlab
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Reimplementation of SeDuMi in Python

New data structures (sparse/dense)

Improved performance, memory

Extended functionality

Platform independence

New input format needed
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New input format for mixed
LP/SOCP/SDP/etc...

Mixed linear/second-order/semidefinite optimization

Sparse and dense representations

General linear operators

Rank-one/low rank constraint matrices

Cone intersections

More cones

More objectives

Portability
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Mixed integer conic optimization

Mostly open area

We have

valid linear cuts

We need

quick resolve (warmstart)
efficient implementations
generating valid conic cuts
efficient branching
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Rounding procedures for conic optimization

IPMs provide approximate solutions

Can we improve them?

Some hope for SOCP, less for SDP

Theory: structure of the solution?

Special cases, applications
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Improved preprocessing techniques

Essential for LP, little done for ConeP

Simplify problem structure

decomposition
exploiting symmetry
special problem structures (graphs)

Detecting redundancy in conic optimization

Treating fixed variables
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