Mixed-Integer Nonconvex problems:
an MILP perspective

Pietro Belotti

Lehigh University — September 11, 2008



Mixed-Integer Non-Linear Programming

Pp) min f(x)
st gi(x) <0 iel
x}gx]'gx]“‘ jeENo=1,2...,n
Xj €L j€Jo <€ No
@ f and g;’s are, in general, nonconvex
o If f and g;’s are convex, we call Py a convex MINLP
@ f and g;’s are factorable: can be written as Zi-;l H?Zl hij(x),
with h;; univariate with factorable arguments



Applications

Water treatment: Design of water networks with reuse of
water, decentralized water treatment (minimize the
consumption of fresh water)

Scheduling and blending for production plants: coupling
the problem of scheduling the production in a refinery and
blending operations to get gasoline of different grades

Trimloss problems for paper, wood, film, steel, glass

industry — Mixed Integer bilinear problems (two sets of
variables, formulation is linear in each set individually)
Portfolio optimization. Convex in the classical case, but

discrete if there are transaction (fixed) costs and
nonconvex if robustness is introduced



Previous work

@ Branch & Bound (B&B) (Gupta & Ravindran '85; Tuy &
Horst '88; Nabar & Schrage '91; Borchers & Mitchell '94;
Stubbs & Mehrotra '99)

@ Generalized Benders Decomposition (Geoffrion 72)

@ Outer-Approximation (Duran & Grossmann '86; Yuan et
al. ’88; Fletcher & Leyffer '94)

@ LP/NLP based B&B (Quesada & Grossmann 92)

Software:
@ Baron (Tawarmalani & Sahinidis)
@ LaGO (Nowak & Vigerske)

@ (convex) Bonmin (Bonami et al.), FIIMINT (Abhishek,
Leyffer, Linderoth)



How do we solve it?

With a spatial Branch&Bound!: enumerate implicitly all local
minima, use a convex (linear) relaxation to find lower bounds.

Key components:

@ linearization (or convexification) for lower bounds
@ heuristics for upper bounds
@ branching rules to partition the solution set

@ bound tightening to reduce the solution set

1See also Smith&Pantelides 1997, Tawarmalani&Sahinidis 2002



Solving nonconvex MINLPs

z=f(x)

Relaxing integrality — nonconvex NLPs



Solving nonconvex MINLPs

z=f(x)

= finding a valid lower bound is difficult (local minimum)



Solving nonconvex MINLPs

z=f(x)

Usually, a convex relaxation is sought



Solving nonconvex MINLPs

For instance, a linear relaxation



Solving nonconvex MINLPs

z=f(x)

= get a lower bound



Solving nonconvex MINLPs

z=f(x)

Solution may be NLP-infeasible (and/or fractional)



Solving nonconvex MINLPs

Either refine the linearization



Solving nonconvex MINLPs

or branch on continuous variables



Solving nonconvex MINLPs

Linearization and lower bound improves
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Solving nonconvex MINLPs

Linearization and lower bound improves



Couenne, a solver for nonconvex MINLPs

Couenne? is a Branch&Bound for nonconvex MINLPs.
Written in C++, available as Open Source in Coin-OR
(Www.coin-or.org), it implements

9 linearization of nonconvex functions

@ heuristics for upper bound

@ specialized branching rules

@ bound tightening
It uses code from Bonmin (MINLP B&B), Cbc

(Branch&Bound), Cgl (Cut generation), Clp (LP solver),
Ipopt (NLP solver), and LaGO(quadratic forms).

2Convex Over/Under ENvelopes for Nonlinear Estimation


https://projects.coin-or.org/Bonmin/wiki/BonCouenne
http://www.coin-or.org
http://projects.coin-or.org/Bonmin
http://projects.coin-or.org/Cbc
http://projects.coin-or.org/Cgl
http://projects.coin-or.org/Clp
http://projects.coin-or.org/Ipopt
http://projects.coin-or.org/LaGO

A late outline

Already there
@ linearization

@ branching rules

Soon there
@ disjunctive cuts
@ nonconvex feasibility pump

@ linearization cuts for MIQQP problems



Convex relaxations of non-convex MINLPs

Py factorable = can be reformulated (Smith&Pantelides, 1997)

k .
o 5% i(x) becomes 2zt i _
Xpri = hi(x), 11 <i<k

Hi‘(:l Xn+i

Xpai = hi(x), 1 <i<k
@ /11(hy(x)) becomes hy(x2), with xp = hy(x)
° ...

0 Hff:] h;(x) becomes

Recursively apply until all nonlinear constraints are of the form
X = ﬂk(xl,xz e ,xk_l), with
Uy € © = {3, ][, exp,log,sin,abs...}.



Reformulation

The initial problem

Py) min f(x)
st gi(x) <0 iel
x}nggx]‘f jENo=1,2...,n
xj € Z j€Jo S No

is reformulated as an equivalent problem

P) min x4
st xp=U(x1,x0..., 1) k=n+1n+2....n4+q
X < xp < jEN=1,2....n4q
Xj€Z JEJCN
Then, each xp = Vi(x1,x2,...,%_1), k=n+1,n+2... ,n+gq,is
linearized through inequalities axx; + Agx > by.



Linearization

Xy =9(x1) = (x1)°
with xl1 <xp <xf

A\ Xp (X1)3




Linearization

X = 0(xn) = (1))’ o
with xl1 <xp <xf




Linearization

A x> (xl )3

xp =9(x1) = (11)* X} { .
with xl1 <xp <xf ‘




Linearization

X = 9(x1) = (1) X} J X
with xl1 <xp <xf : .
l
l




Linearization

2= i) = (1) p’ r
with xl1 <xp <xf ‘ Lo




Linearization

with x} < x; <t

X = 9(x1) = (1) ]




Linearization

Obtain the equivalent problem

P) min x4y
st xp=U(x1,x0. .. x1) k=n+1ln+2....n+q
] ; _
xjnggx]?* ].EN_1,2...,n—|—q
Xj€Z JEJCN

Replace each x; = J(x1,x2, ..., % 1), k=n+1,n+2,....,n4+q
with inequalities a;x; + Ax > by.

LP) min x,44
st. mxp+Ax>b k=n+1ln+2...,n+qg
! : _
xjnggx]‘f ].EN—1,2...,n—|—q
Xj € Z JEJCEN

A linear relaxation providing a valid lower bound.



Spatial B&B with convexification

At each node:
A x]~

(Lb) repeat k times:

() add linearization cuts
if no cuts found, break | | |
get lower bd., soln. X

(Ub) Look for a feasible solution
with NLP solver

(Br.) If xy = Ok(x) infeasible, i.e.
X # 0(%), branch on x
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Spatial B&B with convexification

At each node:

(Lb) repeat k times:
() add linearization cuts
if no cuts found, break
get lower bd., soln. X

(Ub) Look for a feasible solution
with NLP solver

(Br.) If xy = Ok(x) infeasible, i.e.
X # 0(%), branch on x

(x) solves a separation problem: separate current iterate from
convex envelope of {x € R"™ : x; = i (x)}



Branching rules

Purpose: partition the solution set in > two (easier)
subproblems.

@ MILP: if a component x7 of the LP solution is fractional,
create subproblems: Py with branching rule x; < |x7|; P>
with x; > [x7]

@ MINLP: may be necessary for continuous variables.
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Strong branching

Strong branching3: for each branching candidate x;,

<
n+q
>
71+q

@ simulate br. rule x; < xf?, re-solve — new lower bound x

@ simulate br. rule x; > xf-’, re-solve — new lower bound x

@ set Uftrong = Ozmin{xr%rqv x%—i—q} +(1-a) max{x,%rq, x%—i—q}/

withO<a <1

. . . stron
Choose variable x; with maximum U, g

Computationally expensive. ..

=Pseudocosts?, Reliability Branching®: statistics on usend

at
1
initial nodes are used to estimate it at later nodes

*Applegate et al., “The TSP, a computational study”.
4Benichou et al, “Experiments in MIP”, MathProg ‘71
5Achterberg et al., “Branching rules revisited”, OR letters 2005



Comparing with Baron

Baron (Branch And Reduce Optimization Navigator) is
currently the state-of-the-art MINLP solver
(Tawarmalani&Sahinidis 2002).

@ A spatial branch&bound with linearization, bound
reduction, and heuristics

@ Uses external LP and NLP solvers (Cplex 9 and Minos)

@ Couenne with reliability branching



Comparing with Baron — MINLP problems

Couenne Baron
Name #var #int #con time (Ib) ub time (Ib) ub
non-convex MINLP
Multistage 185 39 265 (-17621.4) - 70.88 -7581
barton-aichel 818 66 987 (-102.47) - (-103.31) -81.8659
c-sched-4-7 233 168 138 (-254146) - (-1.93e+05) -1.33e+05
ex1233 48 12 52 (76225.9) 161022 169.80 1.55e+05
ex1243 57 29 75 4.95 83402.5 133 83402.5
ex1244 86 40 110 (68674.3) 85431.1 25.01 82040.0
ex1252 39 15 43 124.50 128894 0.23 128894
nousl 48 2 41 (1.510) 1.567 169.20 1.567
nous2 48 2 41 277.26 0.626 122 0.626
nConvPl 948 148 920 (-8790.4) -4580 (-8946.17) -7529.3
space-25 893 750 235 (84.61) - (155.566) 784.84
space-25-r 818 750 160 (71.72) - (160.507) 786.34
feedloc 89 96 247 114.54 0 293 0
MIQQP®
ibell3a 122 209 104 1164.90 878785 (-3.36e+09) 2966916.97
ibienstl 505 83 576 4065.70 48.74 (-2.42e+09) 48.74
imisc07 260 957 212 (2501.63) 2814.28 - -
iran8x32 512 767 296 4643.10 5255.45 - -
conic (convex) MINLP!
classical 400 120 41 83 1233.30 -0.0815 218.56 -0.0815
classical 40.1 120 41 83 98.04 -0.0847 20.75 -0.0847
robust_20_0 83 22 66 4.42 -0.0798 2.60 -0.0798
robust_20_1 83 22 66 25.85 -0.0533 16.39 -0.0533
shortfall 20_0 84 22 67 56.89 -1.090 6.90 -1.090
shortfall_20_1 84 22 67 (-1.076) -1.066 35.79 -1.075

6H, Mittelmann, http://plato.asu.edu/ftp/migp

7 1 A1 1 oo T
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Comparing with Baron — pure NLP problems

Couenne Baron

Name #var #con time (Ib) ub time (Ib) ub
Hicks_5 83 68 7.37 227.26 21.89 227.26
Hicks_20 338 278 11045 227.26 334.40

Hicks_50 848 698 755.10 227.26 3968 227.26
Hicks-100 1698 1398 3994.40 227.26 - -
ex5.2.5 33 19 (-7211.96) -3500 (-5055) -3500
ex5.33 62 53 (1.89745) 3.234 (2.174) 3.234
foulds3 168 48 (-59.7432) -8 (-69.809) -8

QCQr

dualc8 9 16 (18309.0) 18309.2 (18306.3) 18309.1
duall 86 2 (-205.22) 0.035 (-176.46) 0.035
dual4 76 2 - - (-198.742) 0.746
qadlittl 97 54 3775.80 480319 216.93 480319
qpl 50 2 (-0.0831) 8.093e-4 (-0.304) 8.093e-4
qp2 50 2 (-0.0891) 8.093e-4 (-0.305) 8.093e-4
qp3 100 52 (-0.2905) 8.093e-4 (-0.093) 8.093e-4
cvxqpl.s 101 51 (10767.4) 12467.9 (9739.53) 11590.7
cvxqp2-s 101 26 (7298.61) - (6828.31) 8120.94
cvxgp3.s 101 76 (11943) - 166.25 11943.4
primal4 1490 76 1650.50 -0.746 (-0.779) 0
qetamacr 543 334 2194.80 86760.4 (61835.2) 86760.4
gouldqp2 700 350 (-0.165) 1.84e-4 (-0.186) 1.84e-4
qisrael 143 164 686.72 2.5347e+7 78.92 2.53e+07
gsharelb 221 111 (720058) - 983.35 720078
steqpl 3159 1 1598.70 155144 (148327.34) 157758.85
values 203 2 840.27 -1.39 (-12.90) -1.39




Comparing with Baron — box QP problems

Couenne Baron
Name #var | time (Ib) ub | time (Ib) ub
spar030-060-1 30 2081.10 -706 | (-830.759) -706
spar030-060-2 30 2443 -1377.17 3.62 -1377.17

spar(040-050-1 40 | (-1188.02) | -1154.5 | (-1403.72)  -1154.5
spar(040-050-2 40 4053.90 | -1430.98 | (-1636.44) -1430.98
spar040-060-1 60 | (-1718.03) -1311.06 | (-2009.22) -1322.67
spar050-040-1 60 | (-1597.44) -1411 | (-1900.97) -1411
spar050-050-1 70 | (-2203.13) -1193 | (-2685.19) -1198.41
spar060-020-1 80 470.49 -1212 3582.38 -1212
spar060-020-2 90 4511  -19255 55.06  -1925.5
spar070-025-1 70 | (-2856.69) -2538.91 | (-3169.19) -2538.91
spar080-025-1 80 | (-3758.34) -3157 | (-4173.78) -3157
spar090-025-1 90 | (-4861.59) | -3361.5 | (-5468.25) -3372.5




Improving Couenne

As Open Source code, Couenne can be used as a base for the
development and test of MINLP models/solvers, by

@ specializing linearization, branching, heuristic, and bound
reduction techniques

@ extending the set of operators: quadratic forms,
polynomials. ..

@ generalizing MILP techniques to MINLP



Augmenting the set of operators

@ any functionf : R” — R can do
@ must provide procedure to separate a point x € R"*! from

convenv{x € R x, .1 = f(xy,x0...,%,)}

class polydeg4: public expression {
[...]
double compute(double x) {
return myComputePoly4 (x);
}
void generateCuts(double * curpoint) {
¥



MILP extension #1: Disjunctive cuts

@ Disjunctions arise naturally in Integer Programming and
also in nonconvex MINLP!

@ Recently used in non-MILP contexts — e.g. Saxena et al.,
IPCO 2008, for MIQQPs: disjunction from X — xxT <0

@ In nonconvex (MI)NLP, disjunction are provided by
branching rules on nonlinear expressions.

\ \ /
\\ (%) A ] \ (x) A% |
\ B B | \ * kY
| Txi,xj f | (a7, x5 )
I o ! \\ o “:
| ! i !
| ! | |
\ )/ ) W%
: \ ! : \ : |
| \ : | ‘\ : :
Co | »xi po | »xi
[ u [ 7 U
X; X; X; X; X;




Disjunctive cuts for nonconvex MINLP

Consider a nonconvex MINLP and its current linearization,
min{x, 4 : Ax <a,l < x <u}. Optimal LP solution is x*.

@ branching rule on x; = two refined linearizations:
¢ x; < b: extra inequalities Bx < b
@ x; > b: extra inequalities Dx < d

@ create the Cut Generating LP, find deepest cut ax < 3

max ax* —f
@ =uA +u'B
o vA +v'D
ua +u'b
va +7'd
u,v,u, 0|1 =1

@
VIV

@ cons: one huge LP for just one cut?

~—~~



MILP extension #2: Nonconvex Feasibility Pump

@ principle: two sequences of points
2 Integer but infeasible for the relaxation
X* Fractional but feasible for the relaxation

@ Originally introduced for MILP (Fischetti, Glover, Lodi)

@ Extended to convex MINLP (Bonami, Cornuéjols, Lodi,
Margot)



MILP extension #2: Nonconvex Feasibility Pump

FP for MILP (Fischetti et al.):
min{c’x: Ax > b,x; € ZVi € ] C N}
o ¥ = argmin{cTx: Ax > b};letk — 0
o while ¥ not integer
let 2 == | ]
let ¥*1 := argmin{||x — &||; : Ax > b}
letk — k+1



MILP extension #2: Nonconvex Feasibility Pump

FP for convex MINLP (Bonami et al.):
min{f(x) : g(x) <0,x; € ZVi € ] C N}
o ¥ = argmin{f(x) : g(x) < 0};letk — 0
@ while ¥ not integer
let & := argmin{||x — ¥'||; : Ax > b,x; € ZVi € ] C N}
let ¥+ := argmin{||x — ||; : g(x) < 0}
letk —k+1

[Ax > bis an Outer Approximation of the problem]

FP extends naturally to nonconvex MINLDP, if Outer
Approximation is replaced by linearization inequalities.



Current work #3: linearization of MIQQP

Joint work with F. Margot, A. Qualizza (CMU)
o consider the MIQQP: min{x”Qox + alx : xTQ;x +a]x < b;},
Qi not PSD (in general)
o reformulate: min{Qp e X + agx cQie X+ aiTx <b,X= xxT}
o X =xx" means X —xxT = 0and X — xx’ <0
T):ito

1 x
oyl =
@ X —xx' > Oequals < X

o Linearize X = 0 by separating® cuts of the form a”Xa > 0
for any vector a

8Gee also Sherali & Fraticelli, Sivaramakhrishnan & Mitchell. . .



Future work

Interface to generate problems at code level (analogous to Ilog’s
Concert Technology or GLPK C++ interface)

int main (int argc, char = argv) {

CouenneVar x1, x2;

CouenneConstraint c1 = x1°2 + x2°2 <= 1,
CouenneMinObj 01 = 2 *x1 + 3*x2;

CouenneProblem p;
p << x1 << x2 << 01 << cl;
p.solve();

CouenneConstraint c2 = x2 >= .5;
p << c2;
p.resolve();



Resources

@ P Belotti, ]. Lee, L. Liberti, F. Margot, A. Wachter,
“Branching and bounds tightening techniques for
non-convex MINLP,” opt-online  (Sep. 2008).

http://egon.cheme.cmu.edu/ibm/page.htm
https://projects.coin-or.org/Bonmin/wiki/BonCouenne
(or google “boncouenne”)
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