Mixed-Integer Nonconvex problems: an MILP perspective

Pietro Belotti

Lehigh University – September 11, 2008

Mixed-Integer Non-Linear Programming

$$\begin{array}{lll} \mathbf{P}_{0}) & \min & f(x) \\ & s.t. & g_{i}(x) \leq 0 & i \in I \\ & x_{j}^{l} \leq x_{j} \leq x_{j}^{u} & j \in N_{0} = 1, 2 \dots, n \\ & x_{j} \in \mathbb{Z} & j \in J_{0} \subseteq N_{0} \end{array}$$

- f and g_i 's are, in general, nonconvex
- If f and g_i 's are convex, we call P_0 a **convex** MINLP
- f and g_i 's are factorable: can be written as $\sum_{i=1}^k \prod_{j=1}^p h_{ij}(x)$, with h_{ij} univariate with factorable arguments

Applications

- Water treatment: Design of water networks with reuse of water, decentralized water treatment (minimize the consumption of fresh water)
- Scheduling and blending for production plants: coupling the problem of scheduling the production in a refinery and blending operations to get gasoline of different grades
- Trimloss problems for paper, wood, film, steel, glass industry – Mixed Integer bilinear problems (two sets of variables, formulation is linear in each set individually)
- Portfolio optimization. Convex in the classical case, but discrete if there are transaction (fixed) costs and nonconvex if robustness is introduced

Previous work

- Branch & Bound (B&B) (Gupta & Ravindran '85; Tuy & Horst '88; Nabar & Schrage '91; Borchers & Mitchell '94; Stubbs & Mehrotra '99)
- Generalized Benders Decomposition (Geoffrion '72)
- Outer-Approximation (Duran & Grossmann '86; Yuan et al. '88; Fletcher & Leyffer '94)
- LP/NLP based B&B (Quesada & Grossmann '92)

Software:

- Baron (Tawarmalani & Sahinidis)
- LaGO (Nowak & Vigerske)
- (convex) Bonmin (Bonami et al.), FilMINT (Abhishek, Leyffer, Linderoth)

How do we solve it?

With a spatial Branch&Bound¹: enumerate implicitly all local minima, use a convex (linear) relaxation to find lower bounds. Key components:

- linearization (or convexification) for lower bounds
- heuristics for upper bounds
- branching rules to partition the solution set
- bound tightening to reduce the solution set

¹See also Smith&Pantelides 1997, Tawarmalani&Sahinidis 2002

Relaxing integrality \rightarrow nonconvex NLPs

⇒ finding a valid lower bound is difficult (local minimum)

Usually, a convex relaxation is sought

For instance, a linear relaxation

 \Rightarrow get a lower bound

Solution may be NLP-infeasible (and/or fractional)

Either refine the linearization

or branch on continuous variables

Linearization and lower bound improves

Linearization and lower bound improves

Linearization and lower bound improves

Couenne, a solver for nonconvex MINLPs

Couenne² is a Branch&Bound for nonconvex MINLPs. Written in C++, available as Open Source in Coin-OR (www.coin-or.org), it implements

- linearization of nonconvex functions
- heuristics for upper bound
- specialized branching rules
- bound tightening

It uses code from Bonmin (MINLP B&B), Cbc (Branch&Bound), Cgl (Cut generation), Clp (LP solver), Ipopt (NLP solver), and LaGO (quadratic forms).

²Convex Over/Under ENvelopes for Nonlinear Estimation

A late outline

Already there

- linearization
- branching rules

Soon there

- disjunctive cuts
- nonconvex feasibility pump
- linearization cuts for MIQQP problems

Convex relaxations of non-convex MINLPs

 \mathbf{P}_0 factorable \Rightarrow can be reformulated (Smith&Pantelides, 1997)

•
$$\sum_{i=1}^{k} h_i(x)$$
 becomes
$$\sum_{i=1}^{k} x_{n+i}$$
$$x_{n+i} = h_i(x), 1! \le i \le k$$

•
$$\prod_{i=1}^{k} h_i(x)$$
 becomes
$$\frac{\prod_{i=1}^{k} x_{n+i}}{x_{n+i} = h_i(x), 1 \le i \le k}$$

- $h_1(h_2(x))$ becomes $h_1(x_2)$, with $x_2 = h_2(x)$
- ...

Recursively apply until all nonlinear constraints are of the form $x_k = \vartheta_k(x_1, x_2 \dots, x_{k-1})$, with $\vartheta_k \in \Theta = \{\sum, \prod, \exp, \log, \sin, abs \dots\}$.

Reformulation

The initial problem

$$\begin{array}{lll} \mathbf{P}_{0}) & \min & f(x) \\ & s.t. & g_{i}(x) \leq 0 & i \in I \\ & x_{j}^{l} \leq x_{j} \leq x_{j}^{u} & j \in N_{0} = 1, 2 \dots, n \\ & x_{j} \in \mathbb{Z} & j \in J_{0} \subseteq N_{0} \end{array}$$

is reformulated as an equivalent problem

P) min
$$x_{n+q}$$

s.t. $x_k = \vartheta_k(x_1, x_2, ..., x_{k-1})$ $k = n + 1, n + 2, ..., n + q$
 $x_j^l \le x_j \le x_j^u$ $j \in N = 1, 2, ..., n + q$
 $x_j \in \mathbb{Z}$ $j \in J \subseteq N$

Then, each $x_k = \vartheta_k(x_1, x_2, \dots, x_{k-1})$, $k = n + 1, n + 2 \dots, n + q$, is linearized through inequalities $a_k x_k + A_k x \ge b_k$.

$$x_2 = \vartheta(x_1) = (x_1)^3$$

with $x_1^l \le x_1 \le x_1^u$

$$x_2 = \vartheta(x_1) = (x_1)^3$$

with $x_1^l \le x_1 \le x_1^u$

$$x_2 = \vartheta(x_1) = (x_1)^3$$

with $x_1^l \le x_1 \le x_1^u$

$$x_2 = \vartheta(x_1) = (x_1)^3$$

with $x_1^l \le x_1 \le x_1^u$

$$x_2 = \vartheta(x_1) = (x_1)^3$$

with $x_1^l \le x_1 \le x_1^u$

Obtain the equivalent problem

P) min
$$x_{n+q}$$

s.t. $x_k = \vartheta_k(x_1, x_2, ..., x_{k-1})$ $k = n + 1, n + 2, ..., n + q$
 $x_j^I \le x_j \le x_j^u$ $j \in N = 1, 2, ..., n + q$
 $x_j \in \mathbb{Z}$ $j \in J \subseteq N$

Replace each $x_k = \vartheta_k(x_1, x_2, \dots, x_{k-1})$, $k = n+1, n+2, \dots, n+q$ with inequalities $a_k x_k + A_k x \ge b_k$.

LP) min
$$x_{n+q}$$

 $s.t.$ $a_k x_k + A_k x \ge b_k$ $k = n + 1, n + 2..., n + q$
 $x_j^l \le x_j \le x_j^u$ $j \in N = 1, 2..., n + q$
 $x_j \in \mathbb{Z}$ $j \in J \subseteq N$

A linear relaxation providing a valid lower bound.

- (Lb) **repeat** *k* times:
 - (★) add linearization cuts if no cuts found, break get lower bd., soln. x̂
- (Ub) Look for a *feasible solution* with NLP solver
- (Br.) If $x_k = \theta_k(x)$ infeasible, i.e. $\hat{x}_k \neq \theta_k(\hat{x})$, branch on x

- (Lb) **repeat** *k* times:
- (*) add linearization cuts **if** no cuts found, **break** get *lower bd.*, soln. \hat{x}
 - (Ub) Look for a *feasible solution* with NLP solver
 - (Br.) If $x_k = \theta_k(x)$ infeasible, i.e. $\hat{x}_k \neq \theta_k(\hat{x})$, branch on x

- (Lb) **repeat** *k* times:
 - (\star) add linearization cuts
- if no cuts found, break get *lower bd.*, soln. \hat{x}
 - (Ub) Look for a *feasible solution* with NLP solver
 - (Br.) If $x_k = \theta_k(x)$ infeasible, i.e. $\hat{x}_k \neq \theta_k(\hat{x})$, branch on x

- (Lb) **repeat** *k* times:
 - (*) add linearization cuts if no cuts found, break get *lower bd.*, soln. \hat{x}
- (Ub) Look for a *feasible solution* with NLP solver
 - (Br.) If $x_k = \theta_k(x)$ infeasible, i.e. $\hat{x}_k \neq \theta_k(\hat{x})$, branch on x

- (Lb) **repeat** *k* times:
- (*) add linearization cuts **if** no cuts found, **break** get *lower bd.*, soln. \hat{x}
 - (Ub) Look for a *feasible solution* with NLP solver
 - (Br.) If $x_k = \theta_k(x)$ infeasible, i.e. $\hat{x}_k \neq \theta_k(\hat{x})$, branch on x

- (Lb) **repeat** *k* times:
 - (\star) add linearization cuts
- if no cuts found, **break** get *lower bd.*, soln. \hat{x}
 - (Ub) Look for a *feasible solution* with NLP solver
 - (Br.) If $x_k = \theta_k(x)$ infeasible, i.e. $\hat{x}_k \neq \theta_k(\hat{x})$, branch on x

- (Lb) **repeat** *k* times:
 - (*) add linearization cuts

 if no cuts found, break
- ightharpoonup get *lower bd.*, soln. \hat{x}
 - (Ub) Look for a *feasible solution* with NLP solver
 - (Br.) If $x_k = \theta_k(x)$ infeasible, i.e. $\hat{x}_k \neq \theta_k(\hat{x})$, branch on x

- (Lb) **repeat** *k* times:
- (*) add linearization cuts **if** no cuts found, **break** get *lower bd.*, soln. \hat{x}
 - (Ub) Look for a *feasible solution* with NLP solver
 - (Br.) If $x_k = \theta_k(x)$ infeasible, i.e. $\hat{x}_k \neq \theta_k(\hat{x})$, branch on x

- (Lb) **repeat** *k* times:
 - (\star) add linearization cuts
- if no cuts found, break get *lower bd.*, soln. \hat{x}
 - (Ub) Look for a *feasible solution* with NLP solver
 - (Br.) If $x_k = \theta_k(x)$ infeasible, i.e. $\hat{x}_k \neq \theta_k(\hat{x})$, branch on x

- (Lb) **repeat** *k* times:
 - (*) add linearization cuts if no cuts found, break get *lower bd.*, soln. \hat{x}
- (Ub) Look for a *feasible solution* with NLP solver
- (Br.) If $x_k = \theta_k(x)$ infeasible, i.e. $\hat{x}_k \neq \theta_k(\hat{x})$, branch on x

- (Lb) **repeat** *k* times:
- (*) add linearization cuts if no cuts found, break get lower bd., soln. \hat{x}
 - (Ub) Look for a *feasible solution* with NLP solver
 - (Br.) If $x_k = \theta_k(x)$ infeasible, i.e. $\hat{x}_k \neq \theta_k(\hat{x})$, branch on x

- (Lb) **repeat** *k* times:
 - (\star) add linearization cuts
- if no cuts found, break get *lower bd.*, soln. \hat{x}
 - (Ub) Look for a *feasible solution* with NLP solver
 - (Br.) If $x_k = \theta_k(x)$ infeasible, i.e. $\hat{x}_k \neq \theta_k(\hat{x})$, branch on x

- (Lb) **repeat** *k* times:
 - (*) add linearization cuts if no cuts found, break get *lower bd.*, soln. \hat{x}
- ►(Ub) Look for a *feasible solution* with NLP solver
 - (Br.) If $x_k = \theta_k(x)$ infeasible, i.e. $\hat{x}_k \neq \theta_k(\hat{x})$, branch on x

- (Lb) **repeat** *k* times:
 - (★) add linearization cuts if no cuts found, break get lower bd., soln. x̂
- (Ub) Look for a *feasible solution* with NLP solver
- ►(Br.) If $x_k = \theta_k(x)$ infeasible, i.e. $\hat{x}_k \neq \theta_k(\hat{x})$, branch on x

- (Lb) **repeat** *k* times:
 - (*) add linearization cuts **if** no cuts found, **break** get *lower bd.*, soln. \hat{x}
- (Ub) Look for a *feasible solution* with NLP solver
- ►(Br.) If $x_k = \theta_k(x)$ infeasible, i.e. $\hat{x}_k \neq \theta_k(\hat{x})$, branch on x

At each node:

- (Lb) **repeat** *k* times:
 - (★) add linearization cuts if no cuts found, break get lower bd., soln. x̂
- (Ub) Look for a *feasible solution* with NLP solver
- (Br.) If $x_k = \theta_k(x)$ infeasible, i.e. $\hat{x}_k \neq \theta_k(\hat{x})$, branch on x

(*) solves a **separation** problem: separate current iterate from **convex envelope of** $\{x \in \mathbb{R}^{n+q} : x_k = \theta_k(x)\}$

- MILP: if a component x_i^* of the LP solution is fractional, create subproblems: P_1 with branching rule $x_i \leq \lfloor x_i^* \rfloor$; P_2 with $x_i \geq \lceil x_i^* \rceil$
- MINLP: may be necessary for continuous variables.

- MILP: if a component x_i^* of the LP solution is fractional, create subproblems: P_1 with branching rule $x_i \leq \lfloor x_i^* \rfloor$; P_2 with $x_i \geq \lceil x_i^* \rceil$
- MINLP: may be necessary for continuous variables.

- MILP: if a component x_i^* of the LP solution is fractional, create subproblems: P_1 with branching rule $x_i \leq \lfloor x_i^* \rfloor$; P_2 with $x_i \geq \lceil x_i^* \rceil$
- MINLP: may be necessary for continuous variables.

- MILP: if a component x_i^* of the LP solution is fractional, create subproblems: P_1 with branching rule $x_i \leq \lfloor x_i^* \rfloor$; P_2 with $x_i \geq \lceil x_i^* \rceil$
- MINLP: may be necessary for continuous variables.

Strong branching

Strong branching³: for each branching candidate x_i ,

- simulate br. rule $x_i \le x_i^b$, re-solve \to new lower bound x_{n+q}^{\le}
- simulate br. rule $x_i \ge x_i^b$, re-solve \to new lower bound x_{n+q}^{\ge}
- set $U_i^{\text{strong}} = \alpha \min\{x_{n+q}^{\leq}, x_{n+q}^{\geq}\} + (1-\alpha) \max\{x_{n+q}^{\leq}, x_{n+q}^{\geq}\},$ with $0 < \alpha < 1$

Choose variable x_i with maximum U_i^{strong}

Computationally expensive...

 \Rightarrow Pseudocosts⁴, Reliability Branching⁵: statistics on U_i^{strong} at initial nodes are used to *estimate* it at later nodes

³Applegate et al., "The TSP, a computational study".

⁴Benichou et al, "Experiments in MIP", MathProg '71

⁵Achterberg et al., "Branching rules revisited", OR letters 2005

Comparing with Baron

Baron (Branch And Reduce Optimization Navigator) is currently the state-of-the-art MINLP solver (Tawarmalani&Sahinidis 2002).

- A spatial branch&bound with linearization, bound reduction, and heuristics
- Uses external LP and NLP solvers (Cplex 9 and Minos)
- Couenne with reliability branching

Comparing with Baron – MINLP problems

				Couenne		Baron		
Name	#var	#int	#con	time (lb)	ub	time (lb)	ub	
non-convex MINLP								
Multistage	185	39	265	(-17621.4)	_	70.88	-7581	
barton-aiche1	818	66	987	(-102.47)	-	(-103.31)	-81.8659	
c-sched-4-7	233	168	138	(-254146)	-	(-1.93e+05)	-1.33e+05	
ex1233	48	12	52	(76225.9)	161022	169.80	1.55e+05	
ex1243	57	29	75	4.95	83402.5	1.33	83402.5	
ex1244	86	40	110	(68674.3)	85431.1	25.01	82040.0	
ex1252	39	15	43	124.50	128894	0.23	128894	
nous1	48	2	41	(1.510)	1.567	169.20	1.567	
nous2	48	2	41	277.26	0.626	1.22	0.626	
nConvPl	948	148	920	(-8790.4)	-4580	(-8946.17)	-7529.3	
space-25	893	750	235	(84.61)	_	(155.566)	784.84	
space-25-r	818	750	160	(71.72)	-	(160.507)	786.34	
feedloc	89	96	247	114.54	0	2.93	0	
MIQQP ⁶								
ibell3a	122	209	104	1164.90	878785	(-3.36e+09)	2966916.97	
ibienst1	505	83	576	4065.70	48.74	(-2.42e+09)	48.74	
imisc07	260	957	212	(2501.63)	2814.28	_	-	
iran8x32	512	767	296	4643.10	5255.45	-	-	
conic (convex) MINLP ⁷								
classical_40_0	120	41	83	1233.30	-0.0815	218.56	-0.0815	
classical_40_1	120	41	83	98.04	-0.0847	20.75	-0.0847	
robust_20_0	83	22	66	4.42	-0.0798	2.60	-0.0798	
robust_20_1	83	22	66	25.85	-0.0533	16.39	-0.0533	
shortfall_20_0	84	22	67	56.89	-1.090	6.90	-1.090	
shortfall_20_1	84	22	67	(-1.076)	-1.066	35.79	-1.075	

H. Mittelmann, http://plato.asu.edu/ftp/miqp

^{7.7.1 41 1.6 27 1 2000}

Comparing with Baron – pure NLP problems

			Cou	enne	Baron				
Name	#var	#con	time (lb)	ub	time (lb)	ub			
Hicks_5	83	68	7.37	227.26	21.89	227.26			
Hicks_20	338	278	110.45	227.26	334.40	229.7			
Hicks_50	848	698	755.10	227.26	3968	227.26			
Hicks_100	1698	1398	3994.40	227.26	-	-			
ex5_2_5	33	19	(-7211.96)	-3500	(-5055)	-3500			
ex5_3_3	62	53	(1.89745)	3.234	(2.174)	3.234			
foulds3	168	48	(-59.7432)	-8	(-69.809)	-8			
	QCQP								
dualc8	9	16	(18309.0)	18309.2	(18306.3)	18309.1			
dual1	86	2	(-205.22)	0.035	(-176.46)	0.035			
dual4	76	2	-	_	(-198.742)	0.746			
qadlittl	97	54	3775.80	480319	216.93	480319			
qp1	50	2	(-0.0831)	8.093e-4	(-0.304)	8.093e-4			
qp2	50	2	(-0.0891)	8.093e-4	(-0.305)	8.093e-4			
qp3	100	52	(-0.2905)	8.093e-4	(-0.093)	8.093e-4			
cvxqp1_s	101	51	(10767.4)	12467.9	(9739.53)	11590.7			
cvxqp2_s	101	26	(7298.61)	-	(6828.31)	8120.94			
cvxqp3_s	101	76	(11943)	-	166.25	11943.4			
primal4	1490	76	1650.50	-0.746	(-0.779)	0			
qetamacr	543	334	2194.80	86760.4	(61835.2)	86760.4			
gouldqp2	700	350	(-0.165)	1.84e-4	(-0.186)	1.84e-4			
qisrael	143	164	686.72	2.5347e+7	78.92	2.53e+07			
qshare1b	221	111	(720058)	_	983.35	720078			
stcqp1	3159	1	1598.70	155144	(148327.34)	157758.85			
values	203	2	840.27	-1.39	(-12.90)	-1.39			

Comparing with Baron – box QP problems

		Coue	nne	Baron	
Name	#var	time (lb)	ub	time (lb)	ub
spar030-060-1	30	2081.10	-706	(-830.759)	-706
spar030-060-2	30	24.43	-1377.17	3.62	-1377.17
spar040-050-1	40	(-1188.02)	-1154.5	(-1403.72)	<i>-</i> 1154.5
spar040-050-2	40	4053.90	-1430.98	(-1636.44)	-1430.98
spar040-060-1	60	(-1718.03)	-1311.06	(-2009.22)	-1322.67
spar050-040-1	60	(-1597.44)	-1411	(-1900.97)	-1411
spar050-050-1	70	(-2203.13)	-1193	(-2685.19)	-1198.41
spar060-020-1	80	470.49	-1212	3582.38	-1212
spar060-020-2	90	45.11	-1925.5	55.06	-1925.5
spar070-025-1	70	(-2856.69)	-2538.91	(-3169.19)	-2538.91
spar080-025-1	80	(-3758.34)	-3157	(-4173.78)	-3157
spar090-025-1	90	(-4861.59)	-3361.5	(-5468.25)	-3372.5

Improving Couenne

As Open Source code, **Couenne** can be used as a *base* for the development and test of MINLP models/solvers, by

- specializing linearization, branching, heuristic, and bound reduction techniques
- extending the set of operators: quadratic forms, polynomials...
- generalizing MILP techniques to MINLP

Augmenting the set of operators

- any function $f: \mathbb{R}^n \to \mathbb{R}$ can do
- must provide procedure to **separate** a point $x \in \mathbb{R}^{n+1}$ from

```
convenv{x \in \mathbb{R}^{n+1} : x_{n+1} = f(x_1, x_2 \dots, x_n)}
```

```
class polydeg4: public expression {
   [...]
   double compute(double x) {
      return myComputePoly4 (x);
   void generateCuts(double *curpoint) {
      // separation procedure
```

MILP extension #1: Disjunctive cuts

- Disjunctions arise naturally in Integer Programming and also in nonconvex MINLP!
- Recently used in non-MILP contexts e.g. Saxena et al., IPCO 2008, for MIQQPs: disjunction from $X xx^T \leq 0$
- In nonconvex (MI)NLP, disjunction are provided by branching rules on nonlinear expressions.

Disjunctive cuts for nonconvex MINLP

Consider a nonconvex MINLP and its current linearization, $\min\{x_{n+q}: Ax \leq a, l \leq x \leq u\}$. Optimal LP solution is x^* .

- branching rule on $x_i \Rightarrow$ two *refined* linearizations:
 - $x_i \le b$: extra inequalities $Bx \le b$
 - $x_i \ge b$: extra inequalities $Dx \le d$
- create the *Cut Generating LP*, find deepest cut $\alpha x \leq \beta$:

$$\max \begin{array}{cccc} \alpha x^{\star} & -\beta & & & \\ \alpha & = uA & +u'B & & \\ \alpha & = vA & +v'D & & \\ \beta & \geq ua & +u'b & & \\ \beta & \geq va & +v'd & & \\ ||(u,v,u',v')||_1 = 1 & & & \end{array}$$

• cons: one huge LP for just one cut?

MILP extension #2: Nonconvex Feasibility Pump

- principle: two sequences of points \hat{x}^k Integer but infeasible for the relaxation \bar{x}^k Fractional but feasible for the relaxation
- Originally introduced for MILP (Fischetti, Glover, Lodi)
- Extended to convex MINLP (Bonami, Cornuéjols, Lodi, Margot)

MILP extension #2: Nonconvex Feasibility Pump

```
FP for MILP (Fischetti et al.):

\min\{c^Tx : Ax \ge b, x_i \in \mathbb{Z} \forall i \in J \subseteq N\}

• \bar{x}^0 = \operatorname{argmin}\{c^Tx : Ax \ge b\}; let k \leftarrow 0

• while \bar{x}^k not integer

\det \hat{x}^k := \lfloor \bar{x}^k \rfloor

\det \bar{x}^{k+1} := \operatorname{argmin}\{||x - \hat{x}^k||_1 : Ax \ge b\}

\det k \leftarrow k+1
```

MILP extension #2: Nonconvex Feasibility Pump

```
FP for convex MINLP (Bonami et al.): \min\{f(x): g(x) \leq 0, x_i \in \mathbb{Z} \forall i \in J \subseteq N\}
• \bar{x}^0 = \operatorname{argmin}\{f(x): g(x) \leq 0\}; \operatorname{let} k \leftarrow 0
• while \bar{x}^k not integer
\operatorname{let} \hat{x}^k := \operatorname{argmin}\{||x - \bar{x}^k||_1 : Ax \geq b, x_i \in \mathbb{Z} \forall i \in J \subseteq N\}
\operatorname{let} \bar{x}^{k+1} := \operatorname{argmin}\{||x - \hat{x}^k||_1 : g(x) \leq 0\}
```

[$Ax \ge b$ is an **Outer Approximation** of the problem]

let $k \leftarrow k+1$

FP extends naturally to nonconvex MINLP, if Outer Approximation is replaced by linearization inequalities.

Current work #3: linearization of MIQQP

Joint work with F. Margot, A. Qualizza (CMU)

- consider the MIQQP: $\min\{x^TQ_0x + a_0^Tx : x^TQ_ix + a_i^Tx \le b_i\}$, Q_i not PSD (in general)
- reformulate: $\min\{Q_0 \bullet X + a_0^T x : Q_i \bullet X + a_i^T x \le b_i, X = xx^T\}$
- $X = xx^T$ means $X xx^T \succeq 0$ and $X xx^T \preceq 0$
- $X xx^T \succeq 0$ equals $\begin{pmatrix} 1 & x^T \\ x & X \end{pmatrix} = \tilde{X} \succeq 0$
- Linearize $\tilde{X} \succeq 0$ by separating⁸ cuts of the form $a^T \tilde{X} a \ge 0$ for any vector a

⁸See also Sherali & Fraticelli, Sivaramakhrishnan & Mitchell...

Future work

Interface to generate problems at code level (analogous to Ilog's Concert Technology or GLPK C++ interface)

```
int main (int argc, char **argv) {
   CouenneVar x1, x2;
   CouenneConstraint c1 = x1^2 + x2^2 <= 1;
   CouenneMinObj o1 = 2*x1 + 3*x2;
   CouenneProblem p;
   p << x1 << x2 << o1 << c1;
   p.solve();
   CouenneConstraint c2 = x2 >= .5;
   p << c2;
   p.resolve();
```

Resources

 P. Belotti, J. Lee, L. Liberti, F. Margot, A. Wächter, "Branching and bounds tightening techniques for non-convex MINLP," opt-online (Sep. 2008).